Problem D. Rikka with Tree Game

Input file:
Output file:
Time limit:
Memory limit: $\quad 512$ mebibytes

Game theory is an important branch of computer science. So, for a college student who is a computer science major, playing games may not always be an enjoyable process.
Today, Rikka is doing some research about a simple but interesting game with trees.
Consider a rooted tree T. Initially, there is a token on the root. Two players play a game on this tree, taking turns to move the token. On each turn, assuming the token's position is vertex i, the player needs to choose a child j of i and move the token to j. If i has no child, the game ends immediately.
The final score of the game is the depth of the final position of the token (the depth of the root is 1 , and the depth of every other vertex is 1 plus the depth of its parent). The first player wants to maximize the score, while the second player wants to minimize the score. Assume that both players play optimally.

Given a rooted tree T, calculating the final score of the game is a simple task. So Rikka wants to solve a more challenging problem. She can do some operations to the tree: each time, she can choose a leaf i of the tree (a leaf is a vertex which does not have any children) and link a new node to the tree with node i as its parent.

Let $f(k)$ be the minimum number of operations to make the game's final score be exactly k, assuming that both players play optimally. If it is impossible, let $f(k)$ be -1 . Rikka wants to know the value $\lim _{k \rightarrow+\infty} \frac{f(k)}{k}$.
You know, Rikka is good at asking questions, but not as good at answering them. So, she asks you for help.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{3}\right)$, the number of test cases.
For each test case, the first line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$.
Then $n-1$ lines follow. Each of them contains two integers u and $v(1 \leq u, v \leq n)$ which describe an edge (u, v) of the tree. The index of the root is 1 .
It is guaranteed that the given graphs are trees. It is also guaranteed that there are at most 10 test cases with $n>1000$.

Output

For each test case, print a single line with a single integer: the value of the limit Rikka wants to know. (It turns out that, if the answer exists, it is an integer.) If the limit does not exist, print -1 instead.

Example

	standard input	standard output	
1		2	
8			
1	2		
2	3		
2	4		
4	5		
4	8		
5	6		
5	7		

