Loops

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 1024 megabytes
Consider four integers A, B, C, and D, such that $A<B<C<D$. Let's put them in the corners of a square in some order and draw a loop $A-B-C-D-A$. Depending on the arrangement of the integers, we can get different loop shapes, but some arrangements produce the same shape:

There are three possible loop shapes we can get:

Now consider an $n \times m$ matrix filled with distinct integers from 1 to $n m$, inclusive. Each 2×2 square in this matrix can be seen as a square with integers in its corners. Let's build a loop for each of these squares like we did before:

Your task is to perform the inverse operation. You are given the shape types for all $(n-1)(m-1)$ loops, and you need to build an $n \times m$ matrix filled with distinct integers from 1 to $n m$, inclusive, that produces these shapes.

Input

The first line contains two integers n and $m(2 \leq n, m \leq 500)$.
Each of the next $n-1$ lines contains a string of $m-1$ characters without spaces. Each character is a digit from 1 to 3 , denoting the type of the shape of the corresponding loop.

Output

Print an $n \times m$ matrix filled with distinct integers from 1 to $n m$, inclusive, that produces the shapes of the loops in the input.
It can be shown that such a matrix always exists. If there are multiple answers, print any of them.

Example

	standard input	standard output			
34	9	11	7	12	
4	4	6	1	8	
2	10	5	3		

