Loops

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Consider four integers A, B, C, and D, such that A < B < C < D. Let's put them in the corners of a square in some order and draw a loop A - B - C - D - A. Depending on the arrangement of the integers, we can get different loop shapes, but some arrangements produce the same shape:

There are three possible loop shapes we can get:

Now consider an $n \times m$ matrix filled with distinct integers from 1 to nm, inclusive. Each 2×2 square in this matrix can be seen as a square with integers in its corners. Let's build a loop for each of these squares like we did before:

Your task is to perform the inverse operation. You are given the shape types for all (n-1)(m-1) loops, and you need to build an $n \times m$ matrix filled with distinct integers from 1 to nm, inclusive, that produces these shapes.

Input

The first line contains two integers n and m $(2 \le n, m \le 500)$.

Each of the next n-1 lines contains a string of m-1 characters without spaces. Each character is a digit from 1 to 3, denoting the type of the shape of the corresponding loop.

Output

Print an $n \times m$ matrix filled with distinct integers from 1 to nm, inclusive, that produces the shapes of the loops in the input.

It can be shown that such a matrix always exists. If there are multiple answers, print any of them.

Example

standard input	standard output
3 4	9 11 7 12
113	4 6 1 8
231	2 10 5 3
231	2 10 5 3