SQRT Problem

Input file: standard input
Output file: standard output
Time limit: $\quad 3$ seconds
Memory limit: 256 megabytes
Miss Burger has three positive integers n, a, and b. She wants to find a positive integer solution x ($1 \leq x \leq n-1$) that satisfies the following two conditions:

- $x^{2} \equiv a(\bmod n)$
- $\left\lfloor\sqrt[3]{x^{2}}\right\rfloor=b$

Additionally, it is guaranteed that n is an odd number and $\operatorname{gcd}(a, n)=1$. Here $\operatorname{gcd}(x, y)$ denotes the greatest common divisor of x and y. We also guarantee that there exists a unique solution.

Note that $\lfloor x\rfloor$ represents the largest integer not exceeding x, such as $\lfloor 0.5\rfloor=0,\lfloor 11.3\rfloor=11,\lfloor 101.9\rfloor=101$, $\lfloor 99\rfloor=99,\lfloor 0\rfloor=0,\lfloor 2\rfloor=2$.

Input

The first line contains a single integer $n\left(3 \leq n \leq 10^{100}-1\right)$.
The second line contains a single integer $a(1 \leq a \leq n-1)$.
The third line contains a single integer $b(1 \leq b \leq n-1)$.

Output

Output a single integer denoting the solution x.

Examples

standard input	standard output		
9	7		
4			
3	359895		
650849			
253233	5059		29268658540371639122046169677605538931
:---			
22216978925831646928504047924228222624			
9226521123963832612770162			

