Not Another Eulerian Number Problem

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

For a positive integer α, consider the following sequence $a_{1}, a_{2}, \cdots, a_{\alpha n}$ of length αn which satisfies:

- For each $1 \leq k \leq n$, the sequence contains exactly α occurrences of k.
- If there exists two integers $i<j$ such that $a_{i}=a_{j}$, then for any $i<k<j$, it holds that $a_{k} \geq a_{i}$.

We call a sequence that satisfies the above requirements an (n, α)-order permutation.
Now, given an $\left(n_{0}, \alpha\right)$-order permutation $P=p_{1}, p_{2}, \cdots p_{\alpha n_{0}}$, also given two integers n and m, please calculate the number of (n, α)-order permutations $B=b_{1}, b_{2}, \cdots b_{\alpha n}$ which satisfies:

- P is a subsequence of B.
- There are exactly m indices i such that $1 \leq i<\alpha n$ and $b_{i}>b_{i+1}$.

We say P is a subsequence of B, if and only if we can obtain P by removing some elements (possibly none or all) from B.

Input

There is only one test case in each test file.
The first line contains four integers $\alpha, n, m, n_{0}\left(1 \leq n \leq 10,0 \leq m<n, 1 \leq n_{0} \leq n, 1 \leq \alpha n \leq 10\right)$.
The second line contains αn_{0} positive integers $p_{1}, p_{2}, \cdots, p_{\alpha n_{0}}\left(1 \leq p_{i} \leq n_{0}\right)$ indicating the given sequence P. It is guaranteed that P forms an $\left(n_{0}, \alpha\right)$-order permutation.

Output

Output one line containing one integer, indicating the number of sequence B that meets the requirements.

Examples

		standard input		standard output
1	4	2	2	7
2	1		19	
2	4	2	2	
1	2	2	1	

