Not Another Eulerian Number Problem

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

For a positive integer α , consider the following sequence $a_1, a_2, \dots, a_{\alpha n}$ of length αn which satisfies:

- For each $1 \le k \le n$, the sequence contains exactly α occurrences of k.
- If there exists two integers i < j such that $a_i = a_j$, then for any i < k < j, it holds that $a_k \ge a_i$.

We call a sequence that satisfies the above requirements an (n, α) -order permutation.

Now, given an (n_0, α) -order permutation $P = p_1, p_2, \cdots p_{\alpha n_0}$, also given two integers n and m, please calculate the number of (n, α) -order permutations $B = b_1, b_2, \cdots , b_{\alpha n}$ which satisfies:

- P is a subsequence of B.
- There are exactly m indices i such that $1 \leq i < \alpha n$ and $b_i > b_{i+1}$.

We say P is a subsequence of B, if and only if we can obtain P by removing some elements (possibly none or all) from B.

Input

There is only one test case in each test file.

The first line contains four integers α , n, m, n_0 $(1 \le n \le 10, 0 \le m < n, 1 \le n_0 \le n, 1 \le \alpha n \le 10)$.

The second line contains αn_0 positive integers $p_1, p_2, \dots, p_{\alpha n_0}$ $(1 \le p_i \le n_0)$ indicating the given sequence P. It is guaranteed that P forms an (n_0, α) -order permutation.

Output

Output one line containing one integer, indicating the number of sequence B that meets the requirements.

Examples

standard input	standard output
1 4 2 2	7
2 1	
2 4 2 2	19
1 2 2 1	