Range Periodicity Query

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

For a string $w=w_{1} w_{2} \ldots w_{\text {len }}$, we say that an integer p is a period of w if $w_{i}=w_{i+p}$ holds for all i $(1 \leq i \leq l e n-p)$ and $1 \leq p \leq l e n$.
You will be given a string $d=d_{1} d_{2} \ldots d_{n}$ to generate $n+1$ strings $S_{0}, S_{1}, S_{2}, \ldots, S_{n}$, where S_{0} is an empty string, and for all $i(1 \leq i \leq n)$:

- When d_{i} is a lowercase English letter, $S_{i}=d_{i}+S_{i-1}$.
- When d_{i} is an uppercase English letter, assume its lowercase version is c_{i}, then $S_{i}=S_{i-1}+c_{i}$.

Here, " + " denotes concatenation of strings.
You will then be given a sequence of integers $p_{1}, p_{2}, \ldots, p_{m}$. You need to answer q queries, in each query, you will be given three integers k, l and r. You need to find the minimum number among $p_{l}, p_{l+1}, \ldots, p_{r-1}, p_{r}$ such that it is a period of string S_{k}, or determine there is no answer.

Input

The first line contains a single integer $n(1 \leq n \leq 500000)$ denoting the number of non-empty strings.
The second line contains a string d of length n consists of lowercase and uppercase English letters.
The third line contains a single integer $m(1 \leq m \leq 500000)$ denoting the length of the sequence p.
The fourth line contains m integers $p_{1}, p_{2}, \ldots, p_{m}\left(1 \leq p_{i} \leq n\right)$.
The fifth line contains a single integer $q(1 \leq q \leq 500000)$ denoting the number of queries.
Each of the next q lines contains three integers k, l and $r(1 \leq k \leq n, 1 \leq l \leq r \leq m)$, denoting a query.

Output

For each query, print a single line containing an integer denoting the answer. Note that when there is no answer, please print " 1 " instead.

Example

standard input	standard output
7	1
AABAAba	1
9	2
432175361	-1
6	3
144	6
214	
213	
335	
547	
789	

