Problem F. Permutation

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 mebibytes

A permutation of length n is a sequence $p_{1}, p_{2}, \ldots p_{n}$, where $p_{i} \in\{1,2, \ldots, n\}$ and $\forall_{i \neq j} p_{i} \neq p_{j}$. We say that a pair (p_{i}, p_{j}), where $i<j$, is an inversion, if $p_{i}>p_{j}$. We call a permutation stable, if the number of its inversions does not change after reversing the sequence comprising the permutation.
You are asked to find the k-th stable permutation of length n with respect to the lexicographic order.

Input

The only line of the input contains two integers $n, k\left(1 \leq n \leq 250000,1 \leq k \leq 10^{18}\right)$, denoting the length and the index (in the lexicographic order) of the sought stable permutation, respectively.

Output

If there exists such a permutation, in the first line you should output YES and in the second row, n numbers p_{1}, \ldots, p_{n} representing the sought permutation. Otherwise output NO.

Example

standard input	standard output		
43	YES		
457	2413		

Explanation to the examples: There are 6 stable permutations of length 4:

$$
(1,4,3,2),(2,3,4,1),(2,4,1,3),(3,1,4,2),(3,2,1,4),(4,1,2,3) .
$$

