Problem F. Permutation

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 mebibytes

A permutation of length n is a sequence $p_1, p_2, ..., p_n$, where $p_i \in \{1, 2, ..., n\}$ and $\forall_{i \neq j} p_i \neq p_j$. We say that a pair (p_i, p_j) , where i < j, is an *inversion*, if $p_i > p_j$. We call a permutation *stable*, if the number of its inversions does not change after reversing the sequence comprising the permutation.

You are asked to find the k-th stable permutation of length n with respect to the lexicographic order.

Input

The only line of the input contains two integers n, k $(1 \le n \le 250\,000, 1 \le k \le 10^{18})$, denoting the length and the index (in the lexicographic order) of the sought stable permutation, respectively.

Output

If there exists such a permutation, in the first line you should output YES and in the second row, n numbers p_1, \ldots, p_n representing the sought permutation. Otherwise output NO.

Example

standard input	standard output
4 3	YES
	2 4 1 3
4 57	NO

Explanation to the examples: There are 6 stable permutations of length 4:

(1,4,3,2), (2,3,4,1), (2,4,1,3), (3,1,4,2), (3,2,1,4), (4,1,2,3).