Customs Controls 2

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Look how short the statement is! This must be the easiest problem.
Given a directed acyclic graph G, you need to assign each vertex i a positive integer weight w_{i}. Your goal is to make all paths from 1 to n of equal length.
A directed acyclic graph is a graph with directed edges and without cycles.
The length of a path is defined as the sum of the weights of vertices on the path.

Input

The first line contains a positive integer $T\left(1 \leq T \leq 10^{4}\right)$, denoting the number of test cases.
For each testcase:

- The first line contains two integers $n, m\left(1 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 5 \cdot 10^{5}\right)$, denoting the number of vertices and edges.
- The next m lines each contains two integers u, v, denoting an edge from u to v.

It is guaranteed that $\sum n \leq 2 \cdot 10^{5}, \sum m \leq 5 \cdot 10^{5}$.
It is guaranteed that the graph contains no multiple edges, no self-loops and no cycles. It is also guaranteed that every vertex is reachable from 1 and can reach n.

Output

For each testcase, if there is no solution, then output "No" on a single line. Otherwise, output "Yes" on the first line, then n positive integers $w_{1}, w_{2}, \ldots, w_{n}\left(1 \leq w_{i} \leq 10^{9}\right)$ on the second line.

Examples

standard input	standard output
2 3 3 1 2 1 3 2 3 8 9 1 2 1 3 1 4 2 5 3 6 4 7 5 8 6 8 7 8	```No Yes 11233211```
2 11 16 1 2 6 1 3 1 4 1 5 2 6 4 6 3 7 4 7 5 8 6 8 2 9 3 9 7 10 8 10 9 11 10 11 8 10 1 2 1 3 2 4 3 5 3 6 4 6 2 7 5 7 6 8 7 8	Yes $\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 2 & 1 & 1 & 1\end{array}$ No

