Festival Decorating

Input file:	standard input
Output file:	standard output
Time limit:	9 seconds
Memory limit:	1024 mebibytes

To celebrate the coming winter festival in Byteland, the main street, which can be regarded as the x -axis, is decorated with n colorful lamps, labeled by $1,2, \ldots, n$. The x-coordinate of the i-th lamp is x_{i}, and the color of the i-th lamp is c_{i}. No two lamps share the same x-coordinate.

You will be given q queries. In the i-th query, you will be given an integer $d_{i}\left(1 \leq d_{i} \leq 250000\right)$, and you need to find the lamp $u(1 \leq u \leq n)$ with the minimum index such that there is another lamp located at $x_{u}+d_{i}$ and the color of that lamp is different from c_{u}, or determine it is impossible to find such u. Your answer is considered correct if its absolute or relative error does not exceed 0.5.

Input

The first line of the input contains two integers n and $q(1 \leq n, q \leq 250000)$ denoting the number of lamps and the number of queries.

Each of the next n lines contains two integers x_{i} and $c_{i}\left(1 \leq x_{i} \leq 250000,1 \leq c_{i} \leq n\right)$ denoting the xcoordinate and the color of the i-th lamp. It is guaranteed that no two lamps share the same x-coordinate.

Each of the next q lines contains a single integer $d_{i}\left(1 \leq d_{i} \leq 250000\right)$ denoting the i-th query.

Output

For each query, print a line containing a single number: the minimum index u you found. If it is impossible to find such u, print 0 instead.

Your answer is considered correct if its absolute or relative error does not exceed 0.5 . Note that this means you can output a non-integer as well.
Formally, let your answer be u, and the jury's answer be u^{\prime}. Your answer is accepted if and only if:

$$
\frac{\left|u-u^{\prime}\right|}{\max \left(1,\left|u^{\prime}\right|\right)} \leq 0.5
$$

Example

	standard input	
4	5	3
3	1	2
1	2	1
5	1	2
6	2	0
1		
2		
3		
4		
5		

