Period of a String

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 1024 mebibytes

Randias has n strings s_1, s_2, \ldots, s_n .

For two strings $a = \overline{a_0 a_1 \dots a_{p-1}}$ and $b = \overline{b_0 b_1 \dots b_{q-1}}$, if for all i $(0 \le i < q)$, $b_i = a_{i \bmod p}$, we say that a is a period of b.

Now, Randias can perform the following operation:

• Choose one string s_i and choose two indices j and k $(0 \le j, k < |s_i|)$, then swap $s_{i,j}$ and $s_{i,k}$.

He can perform this operation **any** number of times. After all the operations, he wants the following to be true: for each $1 < i \le n$, string s_{i-1} is a period of s_i .

Help him to find the possible final strings, or determine it is impossible.

Input

Each test contains multiple test cases. The first line contains a single integer t ($1 \le t \le 10^4$) denoting the number of test cases. For each test case:

The first line contains a single integer n $(1 \le n \le 10^5)$.

Then follow n lines. The i-th of these lines contains the string s_i $(1 \le |s_i| \le 5 \cdot 10^6)$. It is guaranteed that the strings only contain lowercase English letters.

It is guaranteed that the sum of n does not exceed 10^5 , and the sum of $|s_i|$ does not exceed $5 \cdot 10^6$.

Output

For each test case, if it is possible to make s_{i-1} a period of s_i for all i after some operations, output "YES" (without quotes) on the first line. Then output n strings in n lines. The i-th string s'_i represents the i-th string after all operations. If there are multiple answers, output any one of them.

If it is impossible to do that, output "NO" (without quotes) on the first line.

Example

standard input	standard output
4	NO
2	YES
abc	abbca
abcd	abbc
4	abbcabb
bbcaa	a
cabb	YES
acabbbb	ab
a	aba
3	abaabaab
ab	NO
aab	
bbaaaaab	
3	
ab	
aab	
bbaaaaaa	