Period of a String

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 mebibytes

Randias has n strings $s_{1}, s_{2}, \ldots, s_{n}$.
For two strings $a=\overline{a_{0} a_{1} \ldots a_{p-1}}$ and $b=\overline{b_{0} b_{1} \ldots b_{q-1}}$, if for all $i(0 \leq i<q), b_{i}=a_{i \bmod p}$, we say that a is a period of b.

Now, Randias can perform the following operation:

- Choose one string s_{i} and choose two indices j and $k\left(0 \leq j, k<\left|s_{i}\right|\right)$, then swap $s_{i, j}$ and $s_{i, k}$.

He can perform this operation any number of times. After all the operations, he wants the following to be true: for each $1<i \leq n$, string s_{i-1} is a period of s_{i}.
Help him to find the possible final strings, or determine it is impossible.

Input

Each test contains multiple test cases. The first line contains a single integer $t\left(1 \leq t \leq 10^{4}\right)$ denoting the number of test cases. For each test case:
The first line contains a single integer $n\left(1 \leq n \leq 10^{5}\right)$.
Then follow n lines. The i-th of these lines contains the string $s_{i}\left(1 \leq\left|s_{i}\right| \leq 5 \cdot 10^{6}\right)$. It is guaranteed that the strings only contain lowercase English letters.
It is guaranteed that the sum of n does not exceed 10^{5}, and the sum of $\left|s_{i}\right|$ does not exceed $5 \cdot 10^{6}$.

Output

For each test case, if it is possible to make s_{i-1} a period of s_{i} for all i after some operations, output "YES" (without quotes) on the first line. Then output n strings in n lines. The i-th string s_{i}^{\prime} represents the i-th string after all operations. If there are multiple answers, output any one of them.
If it is impossible to do that, output "NO" (without quotes) on the first line.

Example

	standard input
4	NO
2	YES
abc	abbca
abcd	abbc
4	abbcabb
bbcaa	a
cabb	YES
acabbbb	ab
a	aba
3	abaabaab
ab	NO
aab	
bbaaaaab	
3	
ab	
aab	
bbaaaaaa	

