Card Game

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 1024 mebibytes

Randias is playing a card game. In this game, each card has a number written on it. For cards with numbers a_1, a_2, \ldots, a_m , Randias will play the game in the following way.

Initially, all cards are in his hand. Randias will maintain a card sequence (initially empty). In the i-th operation, Randias will put the i-th card (this card has number a_i written on it) at the end of the card sequence. Then:

- If there are no other cards in the sequence with number a_i written on them, the *i*-th operation ends.
- Otherwise, let the j-th card in the card sequence have number a_i written on it. Randias will take away all cards between the j-th card and the newly placed card, including the j-th card and the newly placed card.

For example, let a = [2, 1, 3, 1, 2, 3], and the card sequence s = [] initially.

After the 1-st operation, s = [2].

After the 2-nd operation, s = [2, 1].

After the 3-rd operation, s = [2, 1, 3].

After the 4-th operation, s = [2] (cards 1, 3, 1 are taken away).

After the 5-th operation, s = [] (cards 2, 2 are taken away).

After the 6-th operation, s = [3].

Now, Randias is given n cards a_1, a_2, \ldots, a_n . He has q queries. The i-th query is a pair of integers ℓ_i, r_i . With this query, Randias wants to know how many cards will be left in the card sequence if the initial list of cards is $a_{\ell_i}, a_{\ell_i+1}, \ldots, a_{r_i}$.

For some reason, Randias hopes you can answer the questions **online**. That is, you need to decode the next question with the answer for the previous question.

Input

The first line contains two integers n and q $(1 \le n, q \le 3 \cdot 10^5)$ denoting the number of cards and the number of queries.

The following line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le n)$.

Each of the following q lines contains two integers ℓ'_i and r'_i ($0 \le \ell'_i, r'_i \le 2n$). Let the answer for the last query is lastans. Then $\ell_i = \ell'_i \oplus lastans$ and $r_i = r'_i \oplus lastans$ are the next query. In these formulas, \oplus is the bitwise exclusive OR operation. It is guaranteed that, after decoding, $1 \le \ell_i \le r_i \le n$. If you haven't answered any queries before, lastans = 0.

Output

For each query, output a line with one integer: the answer to that query.

Examples

standard input	standard output
5 5	1
3 3 1 1 1	2
5 5	1
3 4	0
3 3	1
0 5	
3 5	
7 7	2
2 4 1 2 3 1 2	1
1 6	1
0 4	1
3 3	2
0 4	3
0 3	0
0 6	
2 7	

Note

For the first example, the segments in the queries are [5,5], [2,5], [1,1], [1,4], and [3,5].