Card Game

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

Randias is playing a card game. In this game, each card has a number written on it. For cards with numbers $a_{1}, a_{2}, \ldots, a_{m}$, Randias will play the game in the following way.
Initially, all cards are in his hand. Randias will maintain a card sequence (initially empty). In the i-th operation, Randias will put the i-th card (this card has number a_{i} written on it) at the end of the card sequence. Then:

- If there are no other cards in the sequence with number a_{i} written on them, the i-th operation ends.
- Otherwise, let the j-th card in the card sequence have number a_{i} written on it. Randias will take away all cards between the j-th card and the newly placed card, including the j-th card and the newly placed card.

For example, let $a=[2,1,3,1,2,3]$, and the card sequence $s=[]$ initially.
After the 1-st operation, $s=[2]$.
After the 2-nd operation, $s=[2,1]$.
After the 3 -rd operation, $s=[2,1,3]$.
After the 4 -th operation, $s=[2]$ (cards $1,3,1$ are taken away).
After the 5 -th operation, $s=[]$ (cards 2,2 are taken away).
After the 6 -th operation, $s=[3]$.
Now, Randias is given n cards $a_{1}, a_{2}, \ldots, a_{n}$. He has q queries. The i-th query is a pair of integers ℓ_{i}, r_{i}. With this query, Randias wants to know how many cards will be left in the card sequence if the initial list of cards is $a_{\ell_{i}}, a_{\ell_{i}+1}, \ldots, a_{r_{i}}$.

For some reason, Randias hopes you can answer the questions online. That is, you need to decode the next question with the answer for the previous question.

Input

The first line contains two integers n and $q\left(1 \leq n, q \leq 3 \cdot 10^{5}\right)$ denoting the number of cards and the number of queries.
The following line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq n\right)$.
Each of the following q lines contains two integers ℓ_{i}^{\prime} and $r_{i}^{\prime}\left(0 \leq \ell_{i}^{\prime}, r_{i}^{\prime} \leq 2 n\right)$. Let the answer for the last query is lastans. Then $\ell_{i}=\ell_{i}^{\prime} \oplus$ lastans and $r_{i}=r_{i}^{\prime} \oplus$ lastans are the next query. In these formulas, \oplus is the bitwise exclusive OR operation. It is guaranteed that, after decoding, $1 \leq \ell_{i} \leq r_{i} \leq n$. If you haven't answered any queries before, lastans $=0$.

Output

For each query, output a line with one integer: the answer to that query.

Examples

standard input	standard output
55	1
$\begin{array}{llllll}3 & 3 & 1 & 1\end{array}$	2
55	1
34	0
33	1
05	
35	
77	2
2412312	1
16	1
04	1
33	2
04	3
03	0
06	
27	

Note

For the first example, the segments in the queries are [5, 5], $[2,5],[1,1],[1,4]$, and $[3,5]$.

