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1 Problem Table tennis

The author of this problem is Tamio-Vesa Nakajima. In this problem, you are given
a sorted sequence of M = N + K integers, and are asked to eliminate K of them so
that the resulting sequence is balanced. A sequence a1 . . . aN is balanced if and only if
S = a1 + aN = a2 + aN−1 = . . .. It is guaranteed that this is possible. The solutions for
the various subtasks follow.

1.1 Subtask 1

Here K = 1 and an O(M2) complexity solution is accepted. Thus, for each integer in
the sequence, try to eliminate it, and see if the resulting sequence is well balanced in
O(M). Output a correct solution upon finding it.

1.2 Subtask 2

Now, K = 1, but an O(M) complexity solution is needed. To do this, consider the first
and last element in the solution. These are either the first and last element in the input;
or the first and second to last; or the second and the last. If we could somehow find a
solution for a given sum S, if possible, in linear time, then we can solve this subtask.

Now, consider an S, and try to find a subsequence of a that is balanced, where the
sum of corresponding elements is S. First, initialise the solution r. Now, consider the
sum of the first and last elements of a. If that sum is greater than S, then clearly the
last element of a cannot be part of any solution (since no integer in a could possible
sum to S with it). So we can eliminate it, and continue on from there. Otherwise, if the
sum is less than S, we can eliminate the first element of a, for the same reasons. If, on
the other hand, the sum is S precisely, then add the first and last elements of a to the
solution r, remove them from a, and continue from there. If r ever reaches N elements,
then we have found a solution. If a ever becomes empty before r reaches N elements,
then no solution exists. Since at each step of the algorithm we eliminate at least an
element of a, this algorithm takes at most M steps to terminate.

Thus, to solve this subtask, try setting S to a1 +aM , a1 +aM−1, a2 +aM , and checking
for which a solution exists.

1



1.3 Subtask 3

Now, K = 2, and an O(M) complexity is needed. Now try setting S to all sums
ai + aM+1−j where i + j ≤ 4, and do a similar algorithm to subtask 2. This works since
clearly the first and last element of the result sequence must be a pair from this set.

1.4 Subtask 4

Now, we want an O(M3) complexity solution. To accomplish this, set S to all possible
sums ai + aj , checking each one in linear time.

1.5 Subtask 5

This subtask rewards a brute-force solution, as N + K ≤ 1. Here, try all N + K take
K ways of selection the K numbers which are eliminated, and see which one leads to a
correct solution.

1.6 Subtask 6 & 7

Here an O(MK2) solution is wanted. To do this, we must find O(K2) candidate values
for S, and check each one as before. Clearly the first element in the solution sequence
is among the first K + 1 elements of a, and likewise the last element in the solution
sequence is among the last K + 1 elements of a (since at most K elements are not in the
solution). So, trying the sum of all of these pairs gives us our O(K2) candidates.

1.7 Subtask 8

Now, we must solve the problem in O(MK). We need to find O(K) candidates for the
value of S, and check each as before. Suppose that M > 4K (since otherwise the solution
from subtask 4 works). Consider the first K and the last K elements of a. Note that the
first K and the last K elements of the solution are among these. Thus, if we consider
the sum of all pairs (ai, aj) where i ≤ K and j ≥ N , the correct sum must appear K
times. Thus, enumerate these 4K2 sums, and select only those that appear K times. S
must appear among these, and there are at most 4K such sums. So these are our O(K)
candidates for S.

2 Problem Trampoline

The author of this problem is Alexa Tudose.

2.1 Subtask 1

To solve this subtask, we can start a Breath-First Search (BFS) for each query from
the given starting position. At each step, depending on the colour of the trampoline
we are currently on, we can either expand to one or two other trampolines. In the end,
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we should check whether the given ending position was visited in the BFS or not. s we
may need to visit up to O(R× C) trampolines for each query, the overall complexity is
O(T ×R× C).

2.2 Subtask 2

To solve this subtask, we need to use the following observation:

Observation 1. Whenever Little Square is on a green trampoline that is not on the
same line as the required ending position, it is optimal for him to go one step down.
Otherwise, he should go one step to the right.

Now, for each query, we can simulate the process from the given starting position and
then check whether the required ending position was visited or not. Note that for each
query we need to make at most R + C steps. Thus, we get the following complexity:
O(T × (R + C)).

2.3 Subtask 3

In this subtask, the starting and ending trampolines are on adjacent lines, which means
that Little Square needs to make exactly one step down. As we can deduce from obser-
vation 1, he should go one step down when he first encounters a green trampoline, and
he should go one step to the right in all other cases. Let yt be the smallest column such
that yt ≥ ystart and there is a green trampoline on (xstart, yt) – we take yt =∞ if there
is no such column. Now, Little Square can go from (xstart, ystart) to (xfinish, yfinish) if
and only if yt ≤ yfinish. To find yt, we need to do a binary search on the positions of
the green trampolines, which leads to the complexity O(logN) for each query. Thus,
the total complexity is O(N + T × logN).

2.4 Subtask 4

By using observation 1, we can deduce, for each green trampoline, which will be the
next green trampoline that we will encounter on our path. More precisely, for a green
trampoline i at position (xi, yi), we say that Next[i] = j, if j is another green trampoline
with xj = xi + 1, yj ≥ yi and there are no green trampolines on line xj , on columns
between yi and yj − 1. We can first compute Next[i] for each green trampoline i by
using binary search on the positions of all green trampolines. Note that it is possible for
a green trampoline i not to have a ”next” (there is no such j as described above). In
this case, we can signal this by setting Next[i] = ∞. After computing Next[], we can
solve each query as follows:

1. Find the first green trampoline that Little Square will encounter on his path. That
is, find yt, where yt is the smallest column such that yt ≥ ystart and there is a green
trampoline on (xstart, yt).

2. Until we reach a green trampoline on line xfinish − 1, we ”jump” from the green
trampoline i we are currently on to Next[i].
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3. Now, suppose we are on trampoline i, on position (xi, yi) and xi = xfinish − 1. If
yi ≤ yfinish, then the answer is Yes, otherwise it is No.

Also, pay attention to the fact that if at some step of our algorithm there is not a
”next green trampoline” then the answer is No. For each query, the complexity of our
algorithm is O(N), as we may visit all the green trampolines during step 2. Overall, the
complexity is O(T ×N).

2.5 Subtask 5

The solution for this subtask is based on the solution for the previous subtask. We again
need to find Next[i] for each green trampoline i, but we also computefather[i][j] =
Next[Next[Next[. . . Next[i]], where Next is applied 2j times. Now, when we need
to make a certain number of ”jumps” during step 2, say K, we write K as sum of
distinct powers of 2. Suppose K = 2p1 + 2p + . . . + 2ps and suppose that after step
1 we are at the green trampoline (xt, yt). We first perform 2p1 jumps, which leads to
the green trampoline father[t][p1]. Afterwards, we perform 2p2 jumps, which leads to
father[father[t][p1][p2]. We continue this process until we perform all the K steps.
Now, the complexity for step 2 of our algorithm is O(logN), so the overall complexity
becomes O(N × logN + T × logN).

An alternative solution is to compute, for each green trampoline i, SqFather[i] =
Next[Next[. . . Next[i]], where Next is applied b

√
Nc times. When we need to make

a certain number of ”jumps” during step 2, we can use the in information found in
SqFather[] and Next[] instead of using information found in father[][]. This solution
leads to an overall complexity O(N ×

√
N + T ×

√
N), which is fast enough to get 100

points.

3 Problem Football

The author of this problem is Tamio-Vesa Nakajima. In this problem the contestant is
asked to solve a variant of the Nim game (whose description can be found online). Rather
than piles and objects, the game here is played with classes and students. Moreover,
the players are ”polite” – they never take more students than in the previous turn, and
never take more than K students in a turn. The solutions to the various subtasks follow.

3.1 Subtask 1

When K = 1, each player takes one student each turn. The classes are irrelevant, all that
matters is the total number of students. If it is even, the second player wins, otherwise
the first player wins. It is worth noting that the sum overflows the int data type.

3.2 Subtask 2

In this subtask, a brute-force solution is awarded points. Create a function wins(v)
that returns 1 if and only if a player wins if starting from a sequence of classes of sizes
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described in vector v. Make the function memoize its results. When calculating a result,
simply try all possible moves, and use wins recursively – if there exists a move that leads
to a losing state, then the initial state is winning; otherwise, it is not. It can be proved
that, if the answers are memoized, at most 2N of them must be calculated.

3.3 Subtask 3

A better brute-force solution is needed here. Create an array d[i1][i2][i3][i4][i5]. This will
be 1 if and only if, starting from a state with ij classes of size j (for j = 1, 2, 3, 4, 5), the
player who moves first wins. Initialise this array so that each index is between 0 and 10
(it thus has 105 total entries). Calculate this array recursively similarly to the previous
subtask, by simulating all possible moves, and checking if a losing state can be reached.
When answering a query, look up the solution in the array.

3.4 Subtask 4

Here, N = 1. Suppose that K = 1. Then the solution is determined by the parity of the
number of students (like in subtask 1). Otherwise, suppose there are an odd number of
students. Then, if the first player takes one student, the second is forced to take one
also, and so on – and the first player wins. So we know how to solve the problem if
K = 1 or N is odd. Now, what if K > 1 and N is even?

Suppose this is the case, and note that the player who selects an odd number will
certainly lose (since the opponent is given a state where there are an odd number of
students, and thus can select one student, and win). So we can consider that both
players only make even moves, and ”give up” instead of playing an odd move. But, then
we can just divide K and the size of the lone class by 2, and reach an equivalent game
state!

This observation completes the solution. Simply continue to divide the class size and
K by two until either the class size becomes odd, or K becomes 1, at which point the
problem can be easily solved.

3.5 Subtask 5 + 6 + 7

As before, if K is one then the game is solved, and if the total number of students is
odd, the game is also solved. So suppose K is not one and there are an even number of
students. The key observation is that we can divide all class sizes by two (ignoring the
remainder) without changing the winner of the game (since the only case in which that
remainder will be relevant is if an odd move is made, in which case the game is decided).
So adapt the solution from the previous subtask, dividing K and all class sizes by two,
until either their sum is odd, or K is one.
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4 Problem Cheerleaders

The authors of this problem are Alexa Tudose and Tamio-Vesa Nakajima. One possible
solution is to use the Backtracking technique to generate all possible sequences of moves
of reasonable length. There are multiple possible optimizations which can decrease the
running time. For instance, note that it is redundant to make two big swaps consecu-
tively. Additionally, it can be proved that it is enough to generate only sequence of moves
whose length does not exceed 2N . Depending on implementation, a solution based on
Backtracking can pass up to the first 3 subtasks. Another possible solution is to start a
DFS/BFS from the given state (i.e. from the initial arrangement of the cheerleaders).
At each step, we can expand from the current state to two other states (i.e. the arrange-
ments obtained by applying dance move 1 or dance move 2). Of course, we must not
visit any state more than once. In order to efficiently check whether a state has already
been visited, we need to use an efficient hashing method to encode each state. It can be
proved (as you will see later) that the number of states reachable from the initial state
is at most 2N × N . Also, for each state it takes O(2N ) to find the two states that we

can expand to. This gives the overall complexity O(N × 22
N

) if implemented properly,
which passes the first 3 subtasks. If the hashing method is less efficient, it may lead to
other complexities, such as O(N2 × 23

N
), which passes only the first 2 subtasks.

4.1 Developing a better solution

To get a better solution, it is necessary to devise a simpler way to define the given
dance moves. Let p[i] represent the position where the i-th cheerleader (in increasing
order of height) is placed. We use 0-indexing for both cheerleaders and positions. So
p[0] represents the position where the shortest cheerleader is placed, whereas p[2N − 1]
represents the position where the tallest cheerleader is placed. Now, the two types of
dance moves can be described as follows:

1. Big swap: p[i] := p[i]xor1� (N − 1), for all i. In other words, this operation flips
the most significant bit (for all elements of p).

2. Big split: p[i] := (p[i] � 1)|((p[i]&1) � (N − 1)) In other words, this operation
moves the least significant bit to the position of the most significant bit, which is
equivalent to a cyclic shift to the right (for all elements of p).

Moreover, any possible sequence of dance moves is equivalent to the following:

1. Apply a certain number (say cnt shifts) of cyclic shifts to p. This can be achieved
by doing big swap repeatedly cnt shift times.

2. Apply xor operator to all elements of p by the same value (say xor val). This can
be achieved by doing big swap and big split in a certain order.
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4.2 Subtask 4

In this subtask, it is guaranteed that we can make p = 〈0, 1, . . . , N − 1〉, but we want to
find out how to do this. We can try each possible value (from 0 to N − 1) for cnt shifts.
Let pcnt shifts denote the array that would be obtained if we applied cnt shifts cyclic
shifts at step 1. Then, in order to obtain p[i] = i in the end, we must take xor val =
pcnt shifts [0]. To check whether we indeed have a solution, we must further check that
pcnt shifts [i]xorxor val = i, for all i. Once we obtain a solution in terms of cnt shifts and
xor val, we should find out a solution as a sequence of dance moves.

4.3 Subtask 5

Our target in this subtask is to minimize the number of inversions of p. We can again
try each possible value for cnt shifts. Now, once cnt shifts is fixed, consider two elements
of the array obtained after step 1: pcnt shifts [i] and pcnt shifts [j], where i < j. Also, let k
be the most significant bit where these two elements differ (i.e. maximum k such that
pcnt shifts [i]&(1� k) 6= pcnt shifts [j]&(1� k)). These two elements will form an inversion
in the end if and only if one of the following conditions is true:

(a) pcnt shifts [i] < pcnt shifts [j] and xor val&(1� k) 6= 0

(b) pcnt shifts [i] > pcnt shifts [j] and xor val&(1� k) = 0

This is true because the bit which decides which element is greater will always be k.
Thus, whether the two elements will form an inversion or not in the end will depend
only on whether bit k is 1 in xor val. This observation immediately leads to an O(N ×
22

N
) solution, which cannot pass subtask 5, but can pass the first 3 subtasks. For all

bits k, we want to find potential[k][0] and potential[k][1], which denote the number
of inversions that would be created if k were set to 0 or 1, respectively. For all pairs
of elements of pcnt shifts , we can find the most significant bit k where they differ and
increase either potential[k][0] or potential[k][1], considering cases a and b listed above.
In the end, we fix each bit k to the value that generates less inversions. Note that each
bit is fixed independently of the others. To solve the last subtask, we again aim to
find potential[k][0, 1]. We also need to maintain a frequency table cnt, where cnt[i][j]
represents the number of elements that have the prefix of length i (the number formed
by the most significant i bits) equal to j. Initially, cnt is set to 0. We then iterate
through all elements in pcnt shifts . When we are at element pcnt shifts [i], we can use cntto
find out, for each bit k, how many elements pcnt shifts [j], where j < i, first differ from
pcnt shifts [i] at bit k. Having this information, we can update potential. Afterwards, we
update cnt, by inserting all the prefixes of pcnt shifts [i]. This solution gives the overall
complexity O(N2 × 2N ), which is fast enough to get 100 points.
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