
43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

Problem Tutorial: “Add One”
Note that for x = (????0 11 · · · 11︸ ︷︷ ︸

k

)2, x + 1 equals to x ⊕ (2k+1 − 1). So we can enumerate the value of

k, and check if we can get a value in the form of (????0 11 · · · 11︸ ︷︷ ︸
k

)2. This can be done by using the linear

basis.

Time Complexity is O(nw2) if we assume ai = O(2w). It can also be optimized to O((n+ w) · w) (but is
not required).

Problem Tutorial: “Be Careful”
Let’s denote the set of the sons of vertex u as Su, and du = |Su|, δu = maxv∈Su dv, tu =

∑
v∈Su

[dv > 0].
Note that for all non-leaf vertex u, the number written on vertex u will be between 0 and du.

Our first insight is using dynamic programming to solve the problem. Let fu,v denotes the number of ways
to fill the subtree of the vertex u, so that the number writing on vertex u will be exactly v.

Part 1

The first way to calculate f is using the inclusion-exclusion principle. Let dpS be the number of ways
if all the numbers written on its children don’t belong to S. First, it seems we need O(2du) states, but
note that we don’t need to add the contribution of the leaf children to the state. So there are only O(2δu)
states.

Part 2

The second way to calculate f is using bitmasks dp. Let fi,S be the number of ways that:

• Let’s fill the numbers from small to large,

• We have considered the numbers 0, 1, · · · , i,

• The set of unfilled sons is S

There will be O(du · 2du) states. But we can also treat all leaves independently. Let’s add a dimension [k]
in our dp, which means an additional constraint that there are k leaves that have been filled. By using
SOS dp, the time complexity will be O(2tu · poly(tu))

Part 3

If we use these two ways at the same time, we will have an O(min(2tu · poly(tu), 2δu · poly(δu))) solution,
but it’s still not enough to pass it, because tu and δu can be large at the same time.

So let’s try to split the set of the sons of u and use an sqrt-decomposition-like process. For a threshold B,
let’s split all the sons with dv ≤ B to the set Au, and the others to the set Bu.

Let’s run the DP described in Part 1 for Au, and run the DP described in Part 2 for Bu simultaneously.
When solving Au, we need to know the states in Bu. Let l = |Bu|, then the time complexity will be
O(2B+l).

Note that if all B + l is at least M , then we have
∑

v dv ≥
M(M+1)

2 , but
∑

i di = n − 1, so M = O(
√
n)

(or more precisely, M ∼
√

2n).

By selecting an optimal M while doing the dp process, the time complexity will be O(2
√
2n · poly(n))

Problem Tutorial: “Counting Sequence”
Let fi,j be the sum of sequences that satisfy the sum of its elements is i and the last element is j. We
have f0,0 = 1, fi,0 = 0(i > 0) and fi,j = c · fi−j,j−1 + fi−j,j+1. But there are O(n2) reachable states, so
it’s not acceptable.

Page 1 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

Note that if a1 = B, then the sum of a1, a2, · · · , am is not less than
∑m

i=1(B− i) = mB− m(m+1)
2 . Because

the sum should be exactly n, the length of the sequence will be no more than O(n/B).

So we can consider the sqrt-decomposition trick. If a1 ≤ B, then we can run the naive DP solution, the
time complexity is O(nB). If a1 > B, then the length of the sequence is O(n/B), and the maximum value
of |ai − a1| will also be O(n/B). Let gi,j,k be the sum of sequences that satisfy:

• The length of the sequence is i

•
∑

t≤i(at − a1) = j

• ai − a1 = k

The time complexity will be O(nB + (n/B)4). If we take B = O(n3/5), then the overall time complexity
is O(n8/5). With some constant optimization, you might be able to pass it with this solution.

But we can actually go further. Let’s not insert an element at the end of the sequence, but at the beginning
of the sequence. Let fi,j be the sum of the sequences that satisfy the length of it is i, and the sum of
at− a1 = j. When doing the transaction, we can either add an a1− 1 or a1 + 1 as a new a′1, but note that
it contributes

∑
(at− a1) either i or −i. The time complexity is O(nB + (n/B)2), which is O(n

√
n) if we

take B = O(
√
n).

After calculating fi,j , we can just enumerate the value of a1 > B and use the DP table to update the
answer. The time complexity is O(n

√
n)).

Problem Tutorial: “DS Team Selection”
For each modification, let’s consider its effect on the whole plane. For d = 3, its modification matrix is:

0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 2 2 2 1 0
0 1 2 3 2 1 0
0 1 2 2 2 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

Taking its 2D difference, we can show that it is a matrix whose main diagonal consists of 1 and secondary
diagonal consists of -1.

0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0
0 0 0 1 −1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0
0 0 0 0 0 0 0 0

Let’s try to maintain the 2D difference matrix. The modification of the diagonals of the matrix can be
differentiated again into the modification of the two rays as follows. For each query x1 y1 x2 y2, the
contribution on the difference matrix is of the form

∑x2
i=x1

∑y2
j=y1

δ(i, j)(x2 − i + 1)(y2 − j + 1), so wee
need to maintain:

• σ =
∑
δ(i, j)

• σx =
∑
iδ(i, j)

Page 2 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

• σy =
∑
jδ(i, j)

• σxy =
∑
ijδ(i, j)

Modify (x, y, w)

We now need to solve the problem of maintaining a two-dimensional plane that supports:

• (Modification 1): For all points (x, y) that satisfy x− y = d and x ≤ c, increase its weight by w.

• (Modification 2): For all points (x, y) that satisfy x+ y = d and x ≤ c, increase its weight by w.

• (Query): For all points (x, y) that satisfy x ≤ x0 and y ≤ y0, find the value of σ, σx, σy and σxy.

Let’s focus on the first type of modification. WLOG, let’s assume that xQ − yQ ≤ xM − yM , so the
modification ray will pass through the side of the rectangle that is parallel to the y-axis (or more precisely,
the line x = xQ). Then, the contribution of the modification (xM , yM , w) to the query (xQ, yQ) is:

Modification 1

• ∆(σ) = (xQ − xM + 1) · w

• ∆(σx) =
∑xQ

i=xM
i · w = w · (xQ+xM)(xQ−xM+1)

2

• ∆(σy) =
∑xQ

i=xM
(i− xM + yM) · w = (xQ − xM + 1) · (yM − xM) · w +

(xQ+xM)(xQ−xM+1)
2 · w

• ∆(σxy) =
∑xQ

i=xM
i·(i−xM+yM)·w =

xQ(xQ+1)(2xQ+1)−(xM−1)xM (2xM−1)
6 ·w+

(yM−xM)(xQ+xM)(xQ−xM+1)
2 ·w

Page 3 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

Overall, the things we need to maintain are:

1. 0-term:
∑
w

2. 1-term:
∑
w · x and

∑
w · y

3. 2-term:
∑
w · x2,

∑
w · x · y and

∑
w · y2

4. 3-term:
∑
w · x3,

∑
w · x2 · y,

∑
w · x · y2 and

∑
w · y3

So we can use D&C and Segment Trees (or Fenwick Tree) to solve this case.

For the second case, we can handle it manually or just rotate the plane and change it to the first case.
The time complexity is O(n log2 n) with a huge constant. Note that by using unsigned int overflow, we
can get the answer modulo 232, and we can divide everything by 6 after our calculation.

Problem Tutorial: “Exciting Travel”
The problem is (almost) equivalent to assigning each vertex to at most one path. Your task is to maximize
the number of paths such that all vertices in it have been assigned to it. Note that for two adjacent paths,
the common endpoints of the two paths can be used twice.

For each query, let’s build a virtual tree of the endpoints of the paths. Let fu denote the answer to
the subtree of u. For li = LCA(pi, pi+1), enumerate whether this path is selected at lca. Consider all
transitions like

∑
u∈path(pi,pi+1),v 6∈path(pi,pi+1)

fv + 1.

Let gu =
∑

v∈son(u) fv − fu, this formula can be rewritten as
∑

u∈path(pi,pi+1),u 6=li gu + 1 + fx + fy, where
fax = fay = li, x ∈ path(li, pi), y ∈ path(li, pi+1). There is a slight difference when pi or pi+1 is an
ancestor of another. It is enough to maintain the prefix sum of g in the process of dp. By using the
small-to-large technique, the time complexity is O(N logN), where N = n+

∑q
i=1 ki.

Problem Tutorial: “Flower’s Land”
Solution 1

Consider centroid decomposition, the centroid is rt, calculate the maximum value of the connected
component of size k that must contain rt, u. Notice that the path of rt to u must be selected, the
remaining part can be divided into two parts: vertex with order greater than dfnu in preorder traversal
and vertex with order less than or equal to dfnu − sizeu in the postorder traversal.

Let fi,j denote that the preorder traversal is [i, n], where j is selected and the order of u, fau is [i, n]
and u is selected, enumerate whether to select u to decide whether to skip the subtree of u, then
fi,j = max(fi+1,j−1 + au, fi+sizeu,j). Similarly, let gi,j denote the values of choice j in the postorder
traversal of [1, i], which can be transferred similarly. To find the answer, you can O(k) to combine the
k − dis(rt, u) item of the two arrays. Terminate immediately when the size of the current connected
component is less than k, so the time complexity is O(nk log n

k), which is enough to pass.

Solution 2

Consider up and down dp, let fu,i denote the maximum value of the connected component of size i in
the subtree of u, and gu,i denote the maximum value of the connected component of size i outside the
subtree of u. Consider transition of f , fu,x = max∑

v sv=x−1 fv,sv + au. For the sons of u v1, v2, · · · , vm,
in order to transition gvi , we define two auxiliary arrays h(1)i,j denotes that outside the subtree u and

in the subtree of vj(j < i), a connected component of size k − j can be selected. And, similarly, h(2)i,j
denotes that j is selected from the subtree of vj(j > i) The maximum value of the vertex. Then there is
gvi,j = maxx−y=j h

(1)
i,x + h

(2)
i,y . Calculate h

(1), h(2) can be done in a similar way to calculate f , with a time
complexity of O(nk).

Page 4 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

Problem Tutorial: “Games”
First, consider that no label is given, we can solve it with a tree dp. Let f(u, i, 0/1) denote the number of
ways in which only vertices inside the subtree u is considered, au is equal to i, and the subtree has/hasn’t
the value greater than u.

The transition is simple, with prefix sum optimization, and the time complexity is O(nm).

Since only one label will be given, we can consider up and down dp. Similarly, let g(u, i, 0/1) denote the
number of ways in which only points outside the subtree u is considered, au is equal to i, and the subtree
has/hasn’t the value greater than u.

The transition from father u to some son v needs to use the f values of u’s sons other than v, this can be
done by processing prefix/suffix sums.

Finally, the answer to the query can be calculated by combining fu and gu.

The total time complexity O(nm+ q).

Problem Tutorial: “Half Plane”
The intended solution is applying the algorithms described in Offline Optimal Range Query and Update
Algorithm by Xinlong Li and Chengze Cai (also the author of this problem). The detailed explanation
can be found here: https://qoj.ac/files/ISAAC_2021_paper_100.pdf

The key idea is to design a divide and conquer algorithm which works on the operation sequence. Let’s
separate the operation sequence into blocks of size O(B). For each block of operations, we maintain a
dynamic rooted forest, where each leaf node corresponds to a point. Notice that B half-planes divide the
plane into O(B2) regions. Two leaf nodes belong to the same rooted tree in the forest if and only if the
corresponding points are currently in the same region on the plane.

When we recursively enter the side of the D&C, some regions are merged and we merge the roots of the
corresponding rooted trees. This is done by creating a new node z and specifying the father of the roots of
these trees as z. When we reach the corner case l = r, there exist only 2 regions, where one of them should
be performed our modification or query. The whole process can be finished using a procedure similar to
the Lazy Propagation.

Page 5 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

The thing we left is to divide these points into regions effectively. You can refer to the methods of planar
point location: Neil Sarnak and Robert Endre Tarjan. Planar point location using persistent search trees,
https://doi.org/10.1145/6138.6151.

The time complexity is Õ(n + m
√
n), where B = Õ(

√
n). You can find a sample implementation here:

https://qoj.ac/submission/36891

Problem Tutorial: “Inverse Line Graph”
Consider that the problem is transformed into, assigning two colors to each vertex of the new graph, which
represents the endpoints of the original graph, so it is necessary to ensure that the derived subgraph of
any color is a complete graph, and each edge is in exactly one complete graph, An edge covered by the
color is said to be in the derived subgraph of that color. We choose any vertex u and consider dividing the
outgoing edges of u into two sets, representing two colors respectively. Let the out-degree of u be S, and
the sets of two colors are S1, S2 respectively. Assuming we get the partition right, for each vertex in S, the
color has been used, and the remaining edges that are not covered, must become a new complete graph,
so it can be processed recursively. Let x ∈ S1, y1, y2 ∈ S2 and (x, y1), (x, y2), then (x, y1) and (x, y2) must
be covered a color, but The edges of y1 to y2 have been covered, so there is no solution. So the edges
between S1, S2 are a match. Choose any p ∈ S, let S1 = {p}, S2 = S − S1, and check it. Otherwise, Then
there must be p, q ∈ S1, (p, q). Suppose we have the initial condition of p, q ∈ S1, then for x ∈ S, if there is
an edge with p, q, it must be in S1, otherwise in S2. For t ∈ S2, (p, t), check it again by the above method.
If it is still not satisfied, it means that p, q is not in a set, p, t is not in a set, because t ∈ S2, so t, q has
no edge so t, q is not in a set, so there is no solution. Therefore, it can be converted into up to 3 times of
testing, each time complexity O(n+m). Total time complexity is O(

∑
n+

∑
m).

Problem Tutorial: “Just Another Number Theory Problem”
Consider that each number x corresponds to a n tuple (qx,1, qx,2, · · · , qx,n), qx,i = x mod pi, which forms
a set of bijective relations.

Note that (ai−ai−1)2 equals to the number of ways to choose two numbers from [ai−1, ai). Let’s call these
two numbers l and r, and WLOG let l ≤ r. Then for all x in [l, r], we have x mod pi 6= 0 for all 1 ≤ i ≤ n.
That is, qx,i + r − l < pi . Let’s enumerate k = r − l. For 0 ≤ qx,i < pi − k there are pi − k values. Swap
is also valid when l 6= r, so the answer is

∑p1−1
i=0 (1 + [i > 0])

∏n
j=1(pj − i).

The time complexity is O(np1).

Problem Tutorial: “Kitten’s Computer”
Part 1: Design an Adder

We want to design an adder with rounding.

Define depth as the time required for the operation.

Half adder: (a, b)→ (a⊕b, ab) depth of 2. Add the progression? Full adder (a, b, c)→ (a⊕b⊕c, ab⊕bc⊕ca)
with a depth of 3. Doing so is not parallel and needs to be accelerated.

Carry-lookahead adder: additive rounds are always generated by G = ab and then propagated through a
series of P = a⊕ b.
Write the progression as

∨
j<iGj

∏
j<k<i Pk, now need to parallelize it. Using multiplication, for

i = 0, 1, · · · , 5 Execute Gj ← Gj ∨ (PjGj−2i), Pj ← PjPj−2i .

All j is computed in parallel and the displacements can be pre-processed in advance. The depth is only
14.

Part 2: Design a Multiplier

Use the idea of vertical multiplication.

Page 6 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

Use bitwise operations to separate each bit of a factor and then multiply it to get the mask. This gives
us 64 numbers, now find a way to add them up.

Direct addition and partitioning will bring the depth of this step to 84, and the total depth of the version
I wrote is 108, so the adder will have to be optimized again.

Notice that the full adder converts the addition of 3 numbers into the addition of 2 numbers at a depth
of 4. Using this compression scale, 64 → 44 → 30 → 20 → 14 → 10 → 7 → 5 → 4 → 3 → 2.

The depth can be compressed to 63.

Bonus

The depth can be further decreased to 59.

Problem Tutorial: “Long: WCWBTT”
The tutorial for the task will be added later. You can find the Chinese tutorial in advance before we finish
the English one: https://qoj.ac/files/WCWBTT.pdf.

And more details about Weight Balanced Top Tree can be found here:
https://zx2003.blog.uoj.ac/blog/7884.

You may check the sample implementation here: https://qoj.ac/submission/40652.

Problem Tutorial: “Matrix Counting”
Let the continuous segment denote an interval in which both the range and position are continuous.

The problem we need to solve is to count the number of permutations that do not have consecutive
segments of length k+1, . . . , n−1. That is, the length of all consecutive segments, except the permutation
itself, does not exceed k.

Assuming that we can replace all the current non-trivial consecutive segments (consecutive segments whose
length is not 1 or n) with a number each time, then repeat the operation, and finally get a permutation
without non-trivial consecutive segments. For the count of answers, we only care if the first replaced
consecutive segment does not exceed k.

Suppose we count the number of permutations F (x) (also called single permutations) without nontrivial
consecutive segments, the answer seems to be (F − x) ◦ (

∑k
i=1 i!x

i).

However, this is incorrect. If the final permutation is [1, 2] or [2, 1], then we are not unique in how we
replace consecutive segments. It depends on how many consecutive segments the current permutation can
be divided into in just order or reverse order. So if this situation is not considered, the answer should be
(F − x− 2x2) ◦ (

∑k
i=1 i!x

i).

Let P (x) =
∑

i≥1 i!x
i. Let’s first consider the permutations that end up with [1, 2]. Consider the OGF

G(x) corresponding to each segment it is divided into. We have

P =
∑
i≥1

Gi =
G

1−G

G(x) cannot get the number of permutations of [1, 2], and the permutations in P (x)−G(x) can be divided
by G(x). That is

G =
P

1 + P

We consider how to get the permutation of [1, 2], [2, 1] to satisfy the condition. Note that after division,
any segment within an interval can constitute a continuous segment. Then we need to satisfy that the
largest proper prefix and proper suffix do not exceed k. That is, the first and last paragraphs are not less
than n− k. This part is

Page 7 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

[xn]2(P + 1)

 ∑
i≥n−k

gix
i

2

Next, we consider how to calculate a coefficient of F and its composite
∑k

i=1 i!x
i. We split all permutations

into two: permutations that would get [1, 2], [2, 1] or not.

The formula for the terms that would get [1, 2], [2, 1], which we have considered, is

2(P −G) = 2

(
P − P

1 + P

)
=

2P 2

1 + P

and what will not get, is
(F − x− 2x2) ◦ P = F (P)− P − 2P 2

Then add the special case of length 1 to get

F (P)− P − 2P 2 = P − 2P 2

1 + P
− x

(F − x− 2x2) ◦H = H − 2H2

1 +H
− P 〈−1〉(H)

Substituting H(x) =
∑k

i=1 i!x
i, we can solve this problem.

The key is to calculate P 〈−1〉(H). Let A = P 〈−1〉, we first need to calculate A. By integer recurrence of
P , the ordinary differential equation is

P = x(1 + P + xP ′)

Substitute x = A, there is

x = A(1 + x+AP ′(A)) = A

(
1 + x+

A

A′

)

xA′ = (1 + x)AA′ +A2

Let B = A(H), we have
H

H ′
B′ =

1 +H

H ′
BB′ +B2

Let C = H/H ′, D = (1 +H)/H ′, E = B(D − 1), we have{
en =

∑n−1
k=0 bkdn−k

−(bn + en) =
∑n−2

k=0(k + 1)bk+1([k 6= 0](en−k + bn−k)− cn−k) +
∑n−1

k=1 bkbn−k

We can calculate everything by using D&C and FFT in O(n log2 n), which is able to pass.

The author’s solution is using O(n log2 n/ log logn) approach for relaxed multiplication. You may find
more details here:

• https://hly1204.blog.uoj.ac/blog/7319

• http://www.texmacs.org/joris/newrelax/newrelax.html

Page 8 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 3: Qingyu, flower and their friends’ Contest, Saturday, August 27, 2022

Problem Tutorial: “No!”
We only care about the position where h is the maximum value of the prefix, so after sorting the walls
from largest to smallest, let fi denote that the i wall must be selected, regardless of the answer that the i
will fall. Then there is fi = maxi−1j=1 min(fj ,

hj−hi
aj

). For the contributions of two j1 < j2, there is at most
one intersection point regardless of the upper limit. So we can find a division point p, when hi ≤ p, then
the decision point j1 is not bad, when fi > p decision point j2 is not bad. And we can find it in O(1), so
consider maintaining it in a method similar to CHT.

It can be done O((n+ q)(log n+ logm)), which is able to pass. If you use radix sort and gcd tricks, it can
be done in O(n+m+ q),m = maxni=1 hi, but it is not required.

Page 9 of 9

