
43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

Problem Tutorial: “Easy Problem”
We are asked to find maximum flow in some convex bipartite graphs (node in one part
connected to segment in other part). First, there exists online O(n log2 n) algorithm for doing so
https://www.researchgate.net/publication/220975392_Dynamic_Matchings_in_Convex_Bipartite_Graphs.
We will use different approach that doesn’t use any ideas from this paper. We will use matching
terminology, since its equivalent.

There exists simple greedy algorithm of finding maximum matching with fixed feeders. Go left to right,
maintain open feeders, for current chicken use feeder that closes earliest. We will do this algorithm right
to left, but implicitly.

Lets do scanline on chicken representative x left to right. We will maintain maximum matching to the
right of x by maintaining how much grains goes to right of x from each feeder. Then for each feeder we
will know how many grains will be left for chickens left of x, for this kind of task (each feeder ends in x),
maximum matching can be found with segment tree (maintain minimum prefix balance).

Lets fix x, we build matching greedily right to left. For each feeder (l, r) we maintain size of matching
to the right of x. We have operations of adding a feeder, starting at x, and moving x to the right. After
adding feeder (x, r), some feeder (possibly (x, r) itself) can have surplus of grains, which we need to
subtract from right matching, therefore adding it to left matching. First candidate to check is feeder with
lowest priority, priority in this case is simply left end of feeder (therefore (x, r) has highest priority).

Consider array right of x. Let wi equal to sum of all feeders that end at i minus ai. Calculate prefix sums
pi on array wi. Then there is the longest prefix with surplus, say po (note that surplus prefixes are records
of p and po is rightmost record, which is simply maximum of p). Then all feeders that end right of o
dont have surplus, meaning all their grains are eaten to the right of x (in fact to the right of o). On the
other hand, removing one grain from any feeder left of o doesn’t change size of matching to the right of
x, therefore we need to find a feeder with lowest priority, that ends left of o, and subtract some surplus
from it.

Consider array p, add 0 to the beginning of it. Smallest prefix with surplus is leftmost record, which is
first position where pi > 0 (denote it as i1), next suprlus prefix is leftmost position, where pi > pi1 and
so on, rightmost surplus prefix is pik (global maximum on p). Let i1, i2, . . . , ik be positions of records of
p, they are surplus prefixes as well. Then if feeder with smallest priority left of ik ends in r, and it < r is
rightmost record left of r, then surplus of this feeder equals to pik − pit . After subtracting its surplus we
need to do this process again until there is no surplus to the right of x, that is when maximum on p is 0.

Now lets prove that its not possible to subtract surplus for too long. We will prove that the number of
operations is bound by O(n log n), however we didn’t come up with example that achieves more than
linear amount.

Rewrite our problem, say we are given an array a and we build prefix sums p on it. Initially ai = pi = 0.
Say we have two type of operations

• ai = ai + w This operation is performed n times

• Let pt be global maximum on p, choose j < t, let pk be global maximum on prefix j, set
aj = aj − (pt − pk). This effectively makes pt equal to pk, making pk new global maximum and
cutting records of p that are right of k.

We need to prove that number of second operations is O(n log n) where n is number of operations of first
type.

To do that, build segment tree on array p, for a non-leaf node of tree set 1 if maximum on this segment
is in right son, otherwise set 0 (if equal, we assume maximum is in left son). We will estimate sum of this
values, initially its 0. First operation changes this value only for nodes on path from root to respective
index i (in other nodes either all values change by w or dont change at all). When doing second type
operation, find node that divides positions k and t. pt > pk before this operation, and after this operation
pt = pk, so value in this node changes from 1 to 0. In total, second type operations is bound by O(n log n).

Page 1 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

Total time complexity is O(n log2 n), since we need one segment tree to maintain surplus on the right and
one segment tree to maintain matching on the left.

Problem Tutorial: “Standard Problem”
First lets compute the maximum weight of a good subsequence. Define fi — maximum weight of a
subsequence, whose lexicographically minimum integer sequence ends with i. Initially fi = 0 for 0 ≤ i ≤ m.
When we add segment [l; r] with weight c we need to do

• f ′l = maxj≤l fj + c

• f ′j = fj + c for l < j ≤ r

Note that we actually need to update f ′l<j≤r using prefix maximums as for f ′l , however doing it only for
f ′l will preserve prefix maximums in array f ′, which is enough.

Now lets calculate number of maximums as well. For each subsequence of segments with maximum weight,
we will count its occurence only for minimum i as in array f . We will store array of pairs fi = (vi, ci) —
weight vi, number of subsequences of weight vi is ci. Initially f0 = (0, 1), fi>0 = (0, 0).

• f ′l = maxj≤l fj , f ′l [v]+ = c

• f ′j = fj , f ′j [v]+ = c for l < j ≤ r

The only difference is that maxj≤l fj is calculated not just as the maximum value, but also as the number
of its occurences. Again, we should update f ′j with prefix maximums, but its easy to see that for those f ′j
that need to be updated from some fi<j its true that f ′j [c] will be 0, so updating it doesn’t change final
result.

This can be done with segment tree, complexity O(n log n).

Problem Tutorial: “Network Transfer”
Let’s process all events in the order of increasing time and maintain array fi — when will i-th transfer
finish if the throughput for given transfer doesn’t change.

Now suppose that next transfer starts at the moment t0, has priority p0 and size s0. Denote P as
the current sum of prioirities. Now, the remaining size of i-th transfer is equal to (fi − t0) · piP w —
the product of time and available throughput. New throughput will be pi

P+p0
w, so new finish time is

f ′i = t0 +
(fi−t0)·

pi
P
w

pi
P+p0

w
= P+p0

P fi − p0
P t0. In other words, you need apply some linear function to all fi, the

same for all i. So we need a data structure which supports 3 operations:

• Apply linear function f(x) = kx+ b to all values.

• Get minimum value and possibly erase it. This is for comparing closest transfer finish with next
starting event to decide which one is earlier.

• Insert new value.

One can notice that it is enough to keep all values in a priority queue and store linear function separately.
Then first operation is just calculating a composition between old linear function and new one. Third
operation is applying inverse function to the value and adding result to the priority queue. And second
operation is working with minimum element in a priority queue, since linear function with positive slope
doesn’t change the relative order of elements.

The total complexity is O(n log n).

Page 2 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

Problem Tutorial: “Hard Problem”
Slow solution: loop over segments [l; r], let m = l+r

2 . We are interested in maximum on [l;m] (let it be
L), maximum on [m + 1; r] (let it be R), and central position m. Segment is good if |L − R| ≤ k. Write
down triples (L,R,m) over all good segments. Key claim is that there are only O(nk log n) valid triples
(valid means there exists corresponding segment [l; r]). We will prove it later. Now we need to find all
valid triples, then loop over them and add (am + 10) ·

∑q
i=p fi for some p ≤ q which is easy to find with

stack.

We will prove the claim for the case when a is permutation, proof for general case can be generalized as
well.

First lets provide an algorithm of finding all triples. Let L < R (solve twice, for original and reversed
array). Loop over position that will correspond to L, say i. Let nearest from left bigger than ai element
be on position L1. There are no more than k candidates (with values L+1, L+2, . . . , L+ k) for value R,
we can find their positions with stack, let them be p1, p2, . . . , pk. We can find pairs (L,R) in O(nk).

Fix apj as R, lets find which m are valid. There are 4 conditions on m:

• i ≤ m < p1

• m <
i+pj+1

2 [otherwise if m is to the right, then because m is the middle of a segment, if segment
contains i, then it must contain pj+1]

• m ≥ L1+pj
2 [same reasons, if m is to the left and contains pj , then it must contain L1]

Each condition is necessary and together they are sufficient, so the set of valid m for L = ai and R = apj
is a segment constructed as intersection of these conditions. Description of algorithm is finished.

Now back to proof. Divide 4 conditions in 2 segments: [i; p1] and [
L1+pj

2 ;
i+pj+1

2]. Turns out, if we loop
over smaller of the two segments, we can prove a complexity similar to small to large on tree.

First lets do that for k = 1. Let l = i (position of left maximum), r = p1 (position of right maximum),
L = L1, R = p2. Then l ≤ m ≤ r and L+r

2 ≤ m ≤
l+R
2 .

Estimating minimum, min(r− l, (l+R)−(L+r)
2) ≤ min(r− l, (l+R)− (L+r)) = min(r− l, (l−L)+(R−r)).

Build cartesian tree for maximum on array a — root of the tree is global maximum in array, subtrees
constructed recursively from subsegments.

Then segment (L; l] will be left subtree of l, segment [l; r) will be right subtree of l. Minimum can be
rewritten as min(B,A+ C) (see image).

Page 3 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

If B ≤ A, then B is chosen and B is smaller son of l (small to large is satisfied). Otherwise B > A, lets add
A to estimating minimum (since A is smaller son), and subtract it from A+C, leaving min(B,C). Notice
that min(B,C) is not greater than smaller son of r, so for r small to large is satisfied. Now notice that
node l is considered once, node r is considered no more than once, since its required that a[l] ≥ a[r]− 1
(because difference of maximums is no more than k). Proof is easily generalized for k > 1, l is considered
k times, r is considered no more than k times because we are considering permutation.

Proof can be generalized for non permutation arrays.

Problem Tutorial: “String Strange Sum”
If you know Russian language you can read the bachelor thesis of Ivan Safonov
(https://www.hse.ru/en/ba/ami/students/diplomas/624888932) about borders of substrings.
The solution of this problem is described in chapters 7.4.3 - 7.4.4 with all proofs and details.

Let’s define hook(l, r) as the minimal i ≤ l, such that s[i, l − 1] can be divided into prefixes of s[l, r].

We can find the sum of hook(l, r) instead of the sum of f(l, r).

Let’s note, that hook(l, r) ≤ hook(l, r − 1). In what cases hook(l, r) < hook(l, r − 1)?

Let’s note, that if hook(l, r) < hook(l, r− 1) when s[hook(l, r− 1)− (r− l+1), hook(l, r− 1)− 1] = s[l, r]
(∗). Also s[l, r] is unbordered substring (the string without equal prefixes and suffixes).

The condition (∗) is the criteria of hook(l, r) < hook(l, r − 1). Let’s note, that if (∗) holds, the value
hook(l, r) = hook(hook(l, r − 1)− (r − l + 1), r) (∗∗).
Let’s iterate r from 1 to |s| and store an array of values hook(l, r). Let’s change our array when r−1→ r.
Let’s find an array of positions Cr, such that hook(l, r) < hook(l, r− 1). If we will find Cr we can sort it,

Page 4 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

iterate all l from it in increasing order and using the formula (∗∗) recalculate correct values of hook(l, r).

How to find Cr? Firstly, let’s add all positions l ≥ r − b
√
nc into it.

Now we should find all l < r − b
√
nc, such that hook(l, r) < hook(l, r − 1. We know, that the substring

s[l, r] is unbordered, has the length >
√
n and appears at least twice in the string s: the first occurence

ends in the position hook(l, r − 1)− 1, the second ends in the position r.

Let’s build a suffix array for the reversed string s. Let’s note, that the total numbers of occurences of
s[l, r] into s is at most n

r−l+1 ≤
√
n, since s[l, r] is unbordered. So, the positions r, hook(l, r − 1)− 1 has

the distance at most
√
n in the suffix array.

Let’s iterate all possible t = hook(l, r − 1) − 1. There are at most
√
n such values t. Now we should

find all l, such that hook(l, r − 1) = t + 1 and hook(l, r − 1) > hook(l, r). It is equivalent to
lcs(t, r) ≥ r − l + 1⇒ l ≥ r + 1− lcs(t, r) (by the (∗)).
So we should add all l, such that hook(l, r − 1) = t+ 1 and l ≥ r + 1− lcs(t, r).
Additionally to the array of hook(l, r) for each value x let’s store the list Lx,r of the positions l, such that
hook(l, r) = t and l < r − b

√
nc. Also for each list let’s store the value max (Lx,r).

Now using these lists we can find possible l: let’s firstly check, that max (Lt+1,r−1) ≥ r + 1− lcs(t, r) (it
means that at least one possible l exists for such t). If it is true let’s just iterate all possible elements of
Lt+1,r−1 and add elements l ≥ r + 1 − lcs(t, r) to Cr. During this iteration let’s remove all such l from
Lt+1,r−1 (it can be made by constructing the new list, because we iterate all elements of Lt+1,r−1). Our
complexity for exact value of t is O(|Lt+1,r−1|).
There is a statement, that I will leave without the proof: the total sum of |Lt+1,r−1| during this algorithm
is O(n

√
n). It is true, if we will iterate only sets for which at most one suitable value l exists.

This statement means, that our construction of Cr part of the algorithm runs in O(n
√
n) and the sum of

|Cr| is O(n
√
n). We can sort Cr with count sort in O(|Cr|+

√
n) time (or just use the sort with log factor,

this solution must pass). After iterating Cr and calculating the correct values of hook(l, r) we should add
these l into the lists Lhook(l,r),r.

Time complexity is O(n
√
n).

Challenge:

Let’s define ξ(s) as the number of (l, r), such that hook(l, r) < hook(l, r − 1). We proved, that
ξ(s) = O(n

√
n) but this bound seems to be not strict and maybe cannot be achieved.

1. Can you construct an example with ξ(s) = ω(n).

2. (here I don’t know the answer) What is the correct bound for ξ(s)?

Problem Tutorial: “Bayan Testing”
Let’s consider some integer d and periodic array {1, 2, . . . , d, 1, 2, . . . , d, . . .} with period d. For this array
for any subsegment of length at most d the answer is negative (all elements are different), for others is
positive.

Of course, it is not always possible to select such d, that exactly m segments have length at most d, so
let’s upgrade this array a bit.

Let’s sort all segments by their length (in case of equal length by left bound). Let d be the length of
(m+ 1)-st segment, r be it’s right bound.

• If d = 1, the answer is impossible, because there are ≥ m + 1 segments of length 1, for them the
answer will be always negative.

• If d ≥ 2 the answer always exists. Let’s consider an array {1, 2, . . . , d, 1, 2, . . . , d, . . .}. From the
position r let’s change the period from d to d−1. It means, that ai = ai−d for i < r and ai = ai−d+1

Page 5 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

for i ≥ r. For such array the answer for the first m segments in the sorted order will be negative,
for others will be positive.

Time complexity: O(n+m logm).

Problem Tutorial: “Battleship: New Rules”
For each ship let’s consider it’s right/bottom corner. By this operation ships of sizes 1× a, a× 1 will be
changed to strips of sizes 2× (a+ 1) and (a+ 1)× 2 respectively.

Let’s note, that each pair of strips do not intersect. Also these strips lie at the square of size (n+1)×(n+1)
(the board with its right/bottom corner).

Let s be the sum of ships lenghts. The sum of strips areas is equal to 2(k + s). So, 2(k + s) ≤ (n+ 1)2.

By the statement we select positions of ships in such way, that s is maximum possible. It can be proved,
that with condition n ≤ k ≤

⌈
n
2

⌉2 the maximum value s = b (n+1)2

2 c − k.
Let’s note, that if all cells of 2× 2 square are covered with strips, there exists a cell covered with ship in
this square.

So:

• If n is odd, 2(s+ k) = (n+ 1)2 and all cells of (n+ 1)× (n+ 1) square are covered with strips. So
the answer is always −1.

• If n is even, 2(s + k) = (n + 1)2 − 1 and there exists exactly one cell (x0, y0), such that it is not
covered with strips. It can be noticed, that the 2× 2 square with cells (x0 − 1, y0 − 1), (x0, y0 − 1),
(x0 − 1, y0), (x0, y0) is empty and it is the only empty 2× 2 square.

So, n is even and to solve the problem we should find the only cell (x0, y0) not covered with strips.

Let’s use a divide and conquer algorithm. During the algorithm we will color some cells, covered with
strips.

We will store the angles of the rectangle (x1, y1), (x2, y2), such that x1 ≤ x0 ≤ x2, y1 ≤ y0 ≤ y2. Values
x1 = y1 = 1, x2 = y2 = n+ 1, initially.

Let’s divide the longest side of the rectangle into two parts. WLOG x2− x1 ≥ y2− y1. Let xmid = x1+x2
2 .

Let’s ask all cells (xmid − 1, y), (xmid, y) with y1 ≤ y ≤ y2. We will ask 2(y2 − y1 + 1) queries. If we will
find an empty 2× 2 square — finish the algorithm immediately. Otherwise for each found cell (i, j), such
that (i, j) is covered with ship let’s color cells (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1) (they are covered
with strips). Let’s note, that we will color all cells (xmid, y) (y1 ≤ y ≤ y2).
Let’s consider two parts of the rectangle, for which it was divided. For each of them let’s calculate the
number of uncolored cells inside it. Let’s note, that during the algorithm we colored some parts of strips
of sizes 2× b, so the total number colored cells is even, so the total number of uncolored cells is odd. So,
in one of the parts the number of uncolored cells will be odd. Let’s note, that the cell (x0, y0) should be
in this part, so we can divide the longest side of the rectangle by 2 and continue the algorithm.

The maximum number of queries we will ask is equal to 2(n+ n
2 + n

2 + n
4 + n

4 + . . .) = 6n.

Problem Tutorial: “Triangular Cactus Paths”
Let’s consider all simple paths between vertices s, f . How they look like? Let’s consider the shortest path.
It’s easy to prove, that it is unique (because in our cactus all cycles have odd length). There are some
triangles, for which an edge lies on this shortest path. We can change this edge into two other edges on
this triangle. Applying this operation multiple times we will get all simple paths between s and f . So, if
the length of the shortest path is l, the number of triangles is t, the number of simple paths with length
k is

(
t
k−l
)
.

Page 6 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

To find the length of the shortest path and the number of triangles for each pair, let’s build a tree from
our graph: let’s consider each cycle between vertices (a, b, c), remove edges between them, add new vertex
v to the graph, connect it to a, b, c. As a result we will get the tree with m + 1 vertices. Let’s write a
pair (1, 0) on edges, that were in the initial graph, a pair (1, 1) on edges, that were added. Let’s build the
structure on the tree for calculating the sum of pairs on paths (for example, with binary liftings).

For two vertices s, f let the pair (a, b) be the sum of pairs on the path between them. The number b
2 is

equal to the number of triangles, the number a− b
2 is equal to the length of the shortest path.

Time complexity: O((m+ q) logm).

Problem Tutorial: “Best Sun”
Required tricks:

• Binary search by the answer.

• Radewoosh trick (https://codeforces.com/blog/entry/62602).

• dp by angle to find the convex polygon (with fixed lowest point).

Let’s fix the lowest point of the sun s and make a binary search. We want to check if there exists a sun
with lowest point As, such that S − xP ≥ 0 for given x.

Let’s make a standart dp. Let’s sort all pairs of points (Ai, Aj), such that the triangle AsAiAj doesn’t
contain other points. Pairs will be sorted by angle of vector Aj −Ai. Let dpp equal to the maximum score
of the path from s to p (dpp = −∞ initially). After that we iterate pairs (i, j) in the sorted order and
update:

dpj = max (dpj , dpi + area(AsAiAj)− x|AiAj |)

Pairs (i, j) can be sorted before iteration of s and the binary search once, so the complexity of this check
is O(n2). At the end we should check, that dps ≥ 0.

But this solution does not take into account points outside of the sun. How we could add them? For each
point Ap outside of the sun let’s consider it’s projection to the perimeter of the sun.

• If this projection is on some side AiAj , it is easy to add such points into dp. For each pairs of points
Ai, Aj let’s calculate the sum of min (|AiAp|, |AjAp|), for all p such that the projection of Ap to the
line AiAj lies on the segment AiAj and Ap lies on the right side to the vector from Ai to Aj . After
that just change |AiAj | to the |AiAj |+ sumi,j in dp formula.

• This projection is some point Ai. To add this case to our dp let’s add events corresponding to it.
Let’s add a second type of events for every pair (i, p). In the moment angle(Ap −Ai) + π

2 let’s add
this event. To update dp for event (i, p) of this type we should make:

dpi− = x|AiAp|

The time complexity of one check is still O(n2).

Now let’s iterate all s in random order and make a binary search only if the answer can be increased on
this step (it can be checked with one check). The total number of checks will be O(n+ log n logA).

So, the total time complexity is O(n3 + n2 log n logA).

Problem Tutorial: “Fast Bridges”
Let’s find how the shortest path between cells (x1, y1), (x2, y2) can look like.

Page 7 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

If x1 = x2 or y1 = y2 it’s length is still |x1 − x2|+ |y1 − y2|.
WLOG x1 < x2, y1 < y2.

It can be proved, that the manhattan path can be optimized with increasing path — the sequence of fast
bridges where each next fast bridge is located upper right to the previous. Let’s define f(x1, y1, x2, y2) as
the length of the longest increasing path between (x1, y1), (x2, y2).

The shortest path between (x1, y1), (x2, y2) has length |x1 − x2|+ |y1 − y2| − f(x1, y1, x2, y2).
So, the answer is equal to the sum of manhattan distances between all pairs of cells (it is equal to
n4(n+ 1)− n3(n+1)(2n+1)

3 minus the sum of f(x1, y1, x2, y2) for all pairs of cells.

The sum of f(x1, y1, x2, y2) can be found for pairs of cells with y1 < y2 and y1 > y2 separately.

Now we should calculate the sum of f(x1, y1, x2, y2) between all pairs of cells (x1, y1), (x2, y2) such that
x1 < x2, y1 < y2.

Let’s find dpi,j as the length of the longest increasing path starting with the fast bridge i, ending with
the fast bridge j. It can be found easily in O(n3).

Let’s compress all coordinates of left down cells of bridges and iterate over cells in compressed grid from
right to left from up to down. During the iteration let’s calculate the value fx,y,i — the length of the
longest increasing path with x coordinates ≥ x, y coordinates ≥ y ending with the fast bridge i. They
can be calculated as a maximum from fx+1,y,i, fx,y+1,i and values dpt,i, such that x1,t = x, y1,t = y. It’s
easy to see, that only the last layer of f can be maintained, so we need only O(n2) memory. The total
calculation time will be O(n3).

During the iteration let’s calculate the sum of f(x1, y1, x2, y2), such that (x1, y1) is located in the
compressed grid cell (x, y). Let’s note, that for all x2 ≥ x2,i, y2 ≥ y2,i the value f(x1, y1, x2, y2) ≥ fx,y,i.
Let’s find the area of union of rectangles [x2,i, k]× [y2,i, k] with fx,y,i = t. This area is equal to the number
of f(x1, y1, x2, y2) ≥ t. So we should just sum these areas for all t.

To find the area of union for each value t we can iterate all points (x2,i, y2,i) in increasing order (by x)
and store the lowest previous point (with smallest y). Area can be recalculated in O(1) easily by adding
the new point. We can sort all points (x2,i, y2,i) before the algorithm, so this part of the solution is linear
for all compressed grid cells (x, y).

The total time complexity is O(n3), memory complexity is O(n2).

Problem Tutorial: “Decoding The Message”
We should find the answer by modulo 255 · 257. Let’s find the answer by modulo 255 and by modulo 257
separately and merge them by Chinese Remainder Theorem.

Page 8 of 9

43rd Petrozavodsk Programming Camp, Summer 2022
Day 7: HSE Koresha Contest, Thursday, September 1, 2022

Finding the answer by modulo 255 is simple: it is equal to (d1 + . . .+ dn)
n!.

Now let’s solve the problem by the prime modulo 257. Let’s consider a number dpn−1 . . . dp1dp0 . By modulo
257 it is equal to

∑
2|i
dpi −

∑
2-i
dpi .

Let’s define S as a set of indices on odd positions. The size |S| = bn2 c. The number by modulo 257 will be

equal to f(S) =
n−1∑
i=0

di − 2
∑
i∈S

di. For each set S there are exactly bn2 c!d
n
2 e! permutations. So the answer

is equal to the multiply of f(S) for all sets S in power bn2 c!d
n
2 e!.

If n ≤ 11, let’s find the multiply iterating all possible subsets S in exponential time.

It n ≥ 12, the number bn2 c!d
n
2 e! is divisible by 256 = φ(257). So the answer will be always 0 or 1.

The answer is 0 if there exists set S of positions of size bn2 c, such that f(S) is divisible by 257. It means

that sum(S) =
∑
i∈S

di ≡

n−1∑
i=0

di

2 (mod 257).

If it is possible to select 256 pairs of different digits (dxi , dyi) (dxi 6= dyi), such set always exists. To prove
it let’s select any set S0 of positions with size bn2 c, such that all xi ∈ S0, yi /∈ S0. After that, by replacing
the digit dxi in S0 to dyi we will add dyi − dxi to sum(S0). All differences dyi − dxi are non-zero. There
are 256 differences, so every remainder by modulo 257 (including −sum(S0)) can be made as a sum of
subset of differences.

Let’s sort all digits by their counts. So ci1 ≤ ci2 ≤ . . . ≤ cik .

So the answer is 0 if
k−1∑
j=1

cij ≥ 2 · 256.

Now we have
k−1∑
j=1

cij ≤ 2 · p (p = 257).

Let’s use knapsack with bitsets to find all pairs (b, s), such that there exists subset of digits
{i1, i2, . . . , ik−1} of size b with sum s. After that for all such pairs with b + cik ≥ bn2 c let’s check that

s+ (bn2 c − b)ik ≡

n−1∑
i=0

di

2 (mod 257).

Time complexity: O(p
3

64) per test case.

Page 9 of 9

