
2022 Mid-Central Regional
Solutions

The Judges

Feb 25, 2023

2022 Mid-Central Regional Solutions 1 / 21

Blueberry Waffle

Problem
A waffle maker rotates 180 degrees every r seconds. A blueberry
waffle is inserted with the blueberries pointing up. After f seconds,
the waffle maker stops and rotates strictly fewer than 90 degrees back
to horizontal. Are the blueberries pointing up or down?

Solution
The waffle maker makes a full rotation every 2r seconds. Therefore,
we can take f modulo 2r . If f is less than r

2 or greater than 3r
2 , then

the blueberries are pointing up. When f is equal to r
2 or 3r

2 , which is
not allowed in the problem, the waffle maker is exactly vertical. When
f is greater than r

2 and less than 3r
2 , the blueberries are pointing down.

Problem Author: Howard Cheng 2022 Mid-Central Regional Solutions 2 / 21

Triangle Containment

Problem
You are given a bunch of weighted points (x , y) in the plane. For each
point, its value is defined as the sum of the weights of the other
weighted points strictly inside the triangle defined by it, (0, 0), and
(b, 0). Compute the value of every point.

Initial Observations
n is too large to directly check, for each point, which points are
strictly inside the induced triangle - it is possible to construct O(n2)
pairs where one point is inside the induced triangle by another point.
If we sort the points by their directed angle θi around the origin, note
that in order for point i to have point j inside its triangle, θj < θi .
By similar logic, if we sort the points by their directed angle αi around
(b, 0), we get a similar relation.

Problem Author: Zachary Friggstad 2022 Mid-Central Regional Solutions 3 / 21

Triangle Containment

Solution
Sort the point in reverse order by angle around (b, 0).
Looping over all points in this given order, we see that the points
inside the current triangle must precede the current point. However,
those points must also have θ smaller than the current point.
We can maintain a segment tree keyed on index in the θi sort order.
When we see point j , report the sum of all points seen so far with
smaller θ, and then activate that point in the segment tree.
Due to the large numbers, exact integer arithmetic must be used when
sorting points by angle. This can be done by using cross products.

Problem Author: Zachary Friggstad 2022 Mid-Central Regional Solutions 4 / 21

Everything is a Nail

Problem
You are given a ternary array. You are to construct a ternary array
where all 0’s are contiguous, all 1’s are contiguous, and all 2’s are
contiguous. Maximize the number of indices where your constructed
array matches the given array.

Problem Author: Travis Meade 2022 Mid-Central Regional Solutions 5 / 21

Solution
There are O(n2) different ternary arrays you can construct, so
checking all of them is too slow.
However, if we construct our ternary array from left to right, the only
information that matters is what integers have been used so far in our
constructed ternary array and what the last added element is.
Therefore, with dynamic programming, we can maintain the maximum
number of integers we can match conditioned on having assigned the
first i integers, the set of ternary integers we have used so far, and
what the ith integer in our ternary array is.

Problem Author: Travis Meade 2022 Mid-Central Regional Solutions 6 / 21

Champernowne Count

Problem
The nth Champernowne word is obtained by concatenating the first n
positive integers in order. Compute how many of the first n
(1 ≤ n ≤ 105) Champernowne words are divisible by k (1 ≤ k ≤ 109).

Solution
n is large enough that it is not practical to store the integers using
arbitrary precision integers.
However, k is small, so we can maintain each Champernowne word
modulo k .
When transitioning from the nth Champernowne word to the
(n + 1)th, we can multiply by 10s and add (n + 1), where s is the
number of digits in n + 1. This should be maintained modulo k .
Be careful about integer overflow, 64-bit integers suffice.
Challenge: Can you solve this for small k but very large n?

Problem Author: Nick Wu 2022 Mid-Central Regional Solutions 7 / 21

Color Tubes

Problem
You have n + 1 tubes each with the capacity to hold three balls.
There are 3n balls distributed among the tubes, three balls each of n
distinct colors. In a single move, you can take a ball from one tube
and move it on top of all the other balls in a tube that has fewer than
three balls in it. In 20n moves or fewer, get all tubes to be either
completely empty or have all three balls of some color.

Solution
There are many different approaches to get this to happen within 20n
moves. We’ll outline one approach that fills in the left n tubes. This
solution will operate in multiple phases.

Problem Author: Zachary Friggstad 2022 Mid-Central Regional Solutions 8 / 21

Initialization
We start by emptying the rightmost tube, arbitrarily moving balls from
there into tubes to the left that have space. This takes at most three
moves.
We proceed by making tube 1 be monochromatic, at which point
future moves will not interact with it at all. We need to be able to
perform this in fewer than 20 moves due to the overhead we incurred.

Making the Leftmost Tube Monochromatic
Let the bottom ball in the leftmost tube have color c . We will move
all balls with color c into this tube.
If the tube is already monochromatic, we’re done.
If the topmost ball has color c and the middle one doesn’t, we can
reverse the two balls as follows:

Problem Author: Zachary Friggstad 2022 Mid-Central Regional Solutions 9 / 21

Making the Leftmost Tube Monochromatic, continued
Let the leftmost tube be l , the rightmost tube with balls be r , and the
empty tube be e. Move a ball from r to e, the topmost ball with color
c into e, the middle ball from l to r , the topmost ball with color c
from e to l , and the last ball from e back to l . This takes five
operations.
Now, it remains to move balls from other tubes into the leftmost tube.
If such a ball is not the bottom-most ball in its tube, we can remove
the incorrect balls out of tube l into e, any balls above that ball into
e, and then move that ball directly into l . Moving all balls back into
e, this takes at most seven moves to fix one ball.
If such a ball is the bottom-most ball in its tube, we can reverse the
entire tube by moving all balls into tube e, at which point we can
apply the above logic to move balls out of l until we can take the
(now topmost ball) from e and move it into l . This takes at most
eight moves.

Problem Author: Zachary Friggstad 2022 Mid-Central Regional Solutions 10 / 21

Food Processor

Problem
You have n different blades. Blade i can cut pieces of size at most mi ,
cutting them in half in hi seconds. Blades reduce the size at an
exponential rate. Compute the minimum number of seconds needed to
convert food that is originally size t to size s.

Solution
For a given piece size, we want to use the blade with the minimal hi
rate. We can ignore blades where mi ≤ s or mi > t.

We need to be able to solve the equation t · 0.5
x
hi = s for x . Taking

logarithms, we can show that x =
hi ·log(t

s)
log 2 .

We need to reevaluate the best blade for all mi values in [s, t]. We
can do this by maintaining the blades sorted by their mi values. It is
too slow to enumerate all eligible blades for each check.

Problem Author: Andy Nguyen 2022 Mid-Central Regional Solutions 11 / 21

Digits of Unity

Problem
Count the number of sets of n positive integers each less than or equal
to m where the bitwise AND of all the integers in the set has at least
k bits turned on.

Solution (High-Level)
The number of subsets is far too large to enumerate, even with
backtracking.
m is small though, so we could enumerate all possible bitwise ANDs
that can result.
We need to use the principle of inclusion-exclusion to handle
overcounting.

Problem Author: Arnav Sastry 2022 Mid-Central Regional Solutions 12 / 21

Digits of Unity

Solution (Details)
We need to precompute factorials and inverse factorials modulo
998244353. We can do the factorials in linear time directly. We can
compute one inverse factorial by leveraging Fermat’s Little Theorem,
then compute the rest by observing 1

i! =
i+1

(i+1)! .

We can also precompute, for an integer x , the number of ways to
select a subset of y elements from a set of x elements where
k ≤ y < x .
We can then enumerate all possible bitwise ANDs, counting the
number of integers less than or equal to m that have all those bits
turned on.

Problem Author: Arnav Sastry 2022 Mid-Central Regional Solutions 13 / 21

Hunt the Wumpus

Problem
Generate locations for four wumpuses on a grid, then simulate playing
a game where you try to find them in the grid.

Solution
This problem requires carefully following the rules stipuated in the
problem. There are several things to be careful for.
One tricky part is making sure that the four locations of the
wumpuses are distinct. There are many ways to implement this - one
can use a set or maintain a boolean array of size 100 to see which
locations have been filled in.
After that, carefully simulate the process to see if a location contains a
wumpus. If a location is hit, make sure to remove the wumpus from
that location.
Be sure to print out all the messages exactly as written.

Problem Author: Tomas Rokicki 2022 Mid-Central Regional Solutions 14 / 21

Branch Manager

Problem
In a rooted tree, people navigate through the tree by always traveling
to the descendant with the lowest ID. n people start at the root and
wish to get to specific destinations, traveling through the tree in order.
Before each person starts traveling, you can permanently delete some
edges from the tree. Compute the index of the first person who
cannot make it home.

Initial Observations
Use the Euler tour technique to represent the tree. Specifically, DFS
through the tree in sorted order of children. Let sv be the time when
we first see vertex v in the DFS, and let ev be the time when we
return from vertex v in the DFS.
We are therefore looking for the first vertex v where there exists a
vertex u appearing before v in the destination order list where ev < su.

Problem Author: Lewin Gan 2022 Mid-Central Regional Solutions 15 / 21

Branch Manager

Solution
If we compute the Euler tour of the tree, we can simply loop over the
destination vertices in order, track the maximum sv we have seen, and
see when some ev is less than the maximum ev seen prior.
Note that it is not strictly necessary to compute the Euler tour
beforehand and then loop over the destination vertices in order. We
can perform a preorder traversal of the tree. Prior to returning from
the recursive call from a vertex v , we can visit any vertex that is in the
call stack of the DFS, so we can loop over destination vertices until we
see one we cannot visit.

Problem Author: Lewin Gan 2022 Mid-Central Regional Solutions 16 / 21

Advertising ICPC

Problem
A grid of letters is advertising ICPC if a 2 × 2 subgrid spells out ICPC.
Count the number of ways to fill in missing letters in the grid such
that the grid is advertising ICPC.

Solution
Even though the grid is small, there are too many ways to fill in blank
grid squares for recursive backtracking to work.
However, if we fill in the squares in row-major order, we note that the
only letters which matter are the previous c + 1 letters, and whether a
2 × 2 subgrid spells out ICPC.
There are 3c+1 ways for the previous c + 1 letters to be arranged, and
we can use dynamic programming to maintain the transitions as we
add letters.
Challenge: Can you solve it in O

(
2min(r ,c)

)
?

Problem Author: Nick Wu 2022 Mid-Central Regional Solutions 17 / 21

Bog of Eternal Stench

Problem
You are given a weighted, directed graph. You start at vertex 1 and
travel some edges to get to vertex n. When you traverse an edge with
weight t, you gain t units of stench. Your stench can never be
negative. What is the minimum stench you can end up with?

Authors: Steph Cheng, Rachel Krohn, Etienne Vouga 2022 Mid-Central Regional Solutions 18 / 21

Bog of Eternal Stench

Solution
Note that the answer is binary searchable. To verify if we can get to
vertex v with at most k units of stench, we construct a new graph
where an edge going from a to b with weight w in the old graph
corresponds to an edge from b to a in the new graph with weight −w .
This corresponds to reversing the process described in the problem, so
traveling an edge in the new graph is akin to going back in time.
We can now run Bellman-Ford in this graph, where we start at vertex
n with k units of stench. We can traverse an edge in the new graph if
and only if our stench would have been nonnegative. We maintain the
maximum stench we can have in the graph conditioned on ending at
vertex n with k units of stench.
If we see a positive cycle in the graph, we can set all maximum values
in the cycle to positive infinity. It is possible to end at vertex n with k
units of stench if and only if it is possible to get to vertex 1 at all.

Authors: Steph Cheng, Rachel Krohn, Etienne Vouga 2022 Mid-Central Regional Solutions 19 / 21

I Could Have Won

Problem
Alice and Bob are playing rock-paper-scissors - they each earn points
with the first to earning k points winning a game, and points resetting
to zero after. For what values of k does Alice win more games than
Bob?

Solution
Because the number of total points won by both Alice and Bob is at
most 2 · 103, we can brute force all values of k up to the total number
of points earned.
We can directly simulate the result for a fixed value of k by
maintaining the current count of points earned by both individuals as
well as the number of games won by both individuals.

Problem Author: Jaehyun Park 2022 Mid-Central Regional Solutions 20 / 21

Creative Accounting

Problem
You are given an array of n integers. Your goal is to partition the array
into subarrays of size k (except for possibly the first and last subarray)
such that as many subarrays as possible have positive sum. Though
n ≤ 3 · 104, k can only take on 103 distinct values.

Initial Observations
Because k can only take on a small number of values relative to n,
this hints at brute-forcing all possible valid values of k .
If we precompute prefix sums - specifically f (i) is the sum of the first i
integers in the array for 0 ≤ i ≤ n, we can compute the sum of all
elements in an arbitrary subarray in O(1) time. Specifically, the sum
of the subarray starting at index a and ending at index b is exactly
equal to f (b + 1)− f (a).

Problem Author: Bowen Yu 2022 Mid-Central Regional Solutions 21 / 21

Creative Accounting

Solution
For a fixed starting point and a subarray size k , we can compute the
number of subarrays with positive sum in O

(
n
k

)
time.

Checking all k possible starting points for a subarray of size k
therefore takes O(n) time.
Checking all possible values of k , this algorithm therefore runs in
O(nk) time.

Problem Author: Bowen Yu 2022 Mid-Central Regional Solutions 22 / 21

