
Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

Problem A. Square Sum
Let m = pk11 . . . pknn , where pi are prime and ki > 0. Due to Chinese remainder theorem, we can solve the
problem modulo pkii independently, and multiply the results. Let z = z0 + pkz1 and consider the equation

x2 + y2 ≡ z (mod pk+1).

If we represent x = x0 + pkx1 and y = y0 + pky1, we can notice that

x2
0 + y2

0 ≡ z0 (mod pk),

thus we can also rewrite it as

2pk(x0x1 + y0y1) ≡ upk (mod pk+1),

where upk ≡ z − x2
0 − y2

0 (mod pk+1). We may further reduce this equation by pk, getting

2(x0x1 + y0y1) ≡ u (mod p).

There are several cases to consider now.

p > 2 case

With known x0, y0 and u, we can rewrite it as

αx1 + βy1 ≡ γ (mod p),

where α, β and γ are constants. Note that when α 6≡ 0 (mod p) or β 6≡ 0 (mod p), there are exaclty p
valid pairs of (x1, y1), as we can uniquely recover at least one of the indeterminates from the other.

Now, what if α ≡ β ≡ 0 (mod p)? Any such solution modulo pk+1 can be obtained from the solution to

(
x

p

)2

+

(
y

p

)2

=
z

p2
(mod pk−1),

so we can get such solutions from the solutions for z
p2

modulo pk−1 in p2 ways each. In other words, let
f(z, k) be the number of solutions to x2 + y2 ≡ z (mod pk) such that at least one of x and y is not
divisible by p, and g(z, k) be the total number of solutions. Then f(z, k + 1) = pf(z, k), and g(z, k) is

g(z, k) =

{
f(z, k) + p2g

(
z
p2
, k − 2

)
, z ≡ 0 (mod p2),

f(z, k), z 6≡ 0 (mod p2).

Note that from f(z, k + 1) = pf(z, k) it follows that f(z, k + 1) = pkf(z, 1), so only k = 1 matters.

p = 2 case

Note that for p = 2 it generally holds that

x2 + y2 ≡ (x0 + 2kx1)2 + (y0 + 2ky1)2 ≡ x2
0 + y2

0 (mod 2k+1)

Page 1 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

It means that the k-th bit of x and y can be arbitrary as long as x2
0 + y2

0 ≡ z (mod 2k+1). Thus, we may
search for x and y as x = x0 +2k−1x1 and y = y0 +2k−1y1, where x2

0 +y2
0 ≡ z (mod 2k) and x0, y0 < 2k−1.

Due to the fact above, there are exactly f(z,k)
4 such (x0, y0) pairs. In such way, we get:

2k(x0x1 + y0y1) ≡ u2k (mod 2k+1).

The identity above holds as long as 2(k−1) ≥ k+1, that is k+1 ≥ 4, and it has 8 solutions for x1, y1 < 4.
Using it with the fact that there are f(z,k)

4 such pairs of (x0, y0). Therefore, for k > 3 it also holds that
f(z, k + 1) = 2f(z, k), and for k ≤ 3 the answer may be found with brute force.

k = 1 case

The solution above developed a recurrence for pk, but it still requires handling base case of k = 1. For
p > 2, it can be proven (see e.g. at https://math.stackexchange.com/questions/398200/) that

1. If p ≡ 1 (mod 4), then f(z, 1) = 2(p− 1) for z ≡ 0 (mod p) and f(z, 1) = p− 1 otherwise;

2. If p ≡ 3 (mod 4), then f(z, 1) = 0 for z ≡ 0 (mod p) and f(z, 1) = p+ 1 otherwise.

Problem B. Super Meat Bros

Formal statement You maintain two sequences. There are ak ways to append k objects to the first
sequence and bk ways to do so for the second sequence. You’re given a1, . . . , an and b1, . . . , bn. You generate
a new sequence in the following way:

1. Zero or more times append any number of objects to the first sequence;

2. Zero or more times append any number of objects to the second sequence;

3. Merge two sequences into one single sequence, preserving the internal order of initial sequences.

How many different final sequences are there that consist of exactly m objects?

1. Binomials Let A(x) = a1x+ a2x
2 + · · ·+ anx

n and B(x) = b1x+ b2x
2 + · · ·+ bnx

n. Then

C =
1

1−A
= 1 +A+A2 + · · · = c0 + c1x+ c2x

2 + . . .

is the generating function for the sequence obtained on the first step and

D =
1

1−B
= 1 +B +B2 + · · · = d0 + d1x+ d2x

2 + . . .

is the generating function for the sequence obtained on the second step. Finally,

F =
∑
i,j

(
i+ j

i

)
cidjx

i+j = f0 + f1x+ f2x
2 + . . .

is the generating function for the final sequence, thus our final objective is to compute fm. For smaller
m, all fm can be computed simultaneously as a convolution of sequences ck

k! and dk
k! . However, in this

problem, m might be arbitrarily large. To tackle it, one should note that f0, f1, . . . is actually a linear
recurrence of degree at most n2.

Page 2 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

2. Umbral calculus Let T : R[c, d]→ R be a linear functional such that

T (cidj) = cidj .

Then one can write
T ((c+ d)k) = fk.

From the problem statement we know that

cm = a1cm−1 + a2cm−2 + · · ·+ ancm−n,
dm = b1dm−1 + b2dm−2 + · · ·+ bndm−n.

Let a(x) = xn− a1x
n−1− · · · − an and b(x) = xn− b1xn−1− · · · − bn be the characteristic polynomials of

ci and dj correspondingly. Then it holds that

T (cidja(c)) = T (cidjb(d)) = 0

for any i, j ≥ 0. Same would also be true for the span of such polynomials. In other words,

T (X) = T (Y)

for any X(c, d) and Y (c, d) such that X − Y ∈ 〈a(c), b(d)〉, where 〈a, b〉 is the ideal generated by a and b.

3. Composed sum To prove that fm is a linear recurrence, we should find f(c+ d) such that

T (X) = T (Y)

for any X(c+ d) and Y (c+ d) if X − Y ∈ 〈f(c+ d)〉. It is obviously true if f(c+ d) ∈ 〈a(c), b(d)〉, so the
problem boils down to finding any polynomial f(c+ d) in the 〈a(c), b(d)〉 ideal. Let

a(c) =
n∏

i=1
(c− λi),

b(d) =
n∏

j=1
(d− µj).

In this representation, you may define a polynomial

f(c+ d) =

n∏
i=1

n∏
j=1

[(c+ d)− (λi + µj)].

Alternatively you may rewrite it as

f(c+ d) =

n∏
i=1

n∏
j=1

[(c− λi) + (d− µj)] =
∑

dij∈{0,1}

n∏
i=1

n∏
j=1

(c− λi)dij (d− µj)1−dij .

The sum has 2n
2 summands, each divisible by either a(c) or b(d), thus f(c+ d) ∈ 〈a(c), b(d)〉.

Side note: One can prove that

f(c � d) =

n∏
i=1

n∏
j=1

[(c � d)− (λi � µj)] ∈ 〈a(c), b(d)〉

for pretty much arbitrary well-defined binary operation �.

Page 3 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

4. Logarithms Computing fm now reduces to the following tasks:

1. Compute f0, f1, . . . , fn2−1,

2. Compute the polynomial f(x),

3. Compute xm mod f(x) to get coefficients of f0, f1, . . . , fn2−1 that make up fm.

First step is done as the binomial convolution of c0, c1, . . . and d0, d1, . . . , the third step can be done with
the process described on CP-Algorithms (https://cp-algorithms.com/algebra/polynomial.html).

Finally, for the second step, let’s look on the logarithm of the reversed polynomial xna(x−1):

log xna(x−1) = log
n∏

i=1

(1− λix) =
n∑

i=1

log(1− λix) =
n∑

i=1

∞∑
k=1

λki x
k

k
.

Let si = λi1 + · · ·+ λin, tj = µj1 + · · ·+ µjn and

rk =
n∑

i=1

n∑
j=1

(λi + µj)
k =

k∑
i=1

(
k

i

)
sitk−i,

then
log xna(x−1) =

∞∑
k=1

skx
k

k ,

log xnb(x−1) =
∞∑
k=1

tkx
k

k ,

log xn
2
f(x−1) =

∞∑
k=1

rkx
k

k .

The sequence r0, r1, . . . can be computed as the binomial convolution of s0, s1, . . . and t0, t1, . . . , after
which f(x) can be recovered with the polynomial exponent.

Problem C. Testing Subjects Usually Die

Formal statement You’re given p1, . . . , pn and c. Initially, number p is chosen in such a way that p
has a probability of pk to be k. You pick a distribution q1, . . . , qn. Then the number q is chosen such
that q has a probability qk to be k. If p = q, the game ends. Otherwise, the number p is renewed with
probability c and stays the same with the probability 1− c. Then, the number q is chosen again. What is
the minimum possible expected value E of tries until p = q?

Solution If c = 1:

E =
1

p1q1 + · · ·+ pnqn
.

If c = 0:

E =
p1

q1
+ · · ·+ pn

qn
.

Otherwise:

Page 4 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

E =
n∑

i=1

pi[1 + (1− qi)di],

di = cE + (1− c)[1 + (1− qi)di],

di =
cE + (1− c)

1− (1− c)(1− qi)
,

1 + (1− qi)di =
1 + (1− qi)pE
c+ qi − cqi

.

Substituting it back into the sum, it is possible to get an explicit expression for E. Let ai = 1
c+qi−cqi and

bi = qi
c+qi−cqi , then E = aT p

bT p
, thus

E =

n∑
i=1

pi
c+(1−c)qi

n∑
i=1

piqi
c+(1−c)qi

=
f(q)

g(q)
→ min,

q1 + · · ·+ qn = 1

Let’s use Lagrange multipliers to solve the constrained minimization problem. Lagrangian:

L(q, λ) =
f(q)

g(q)
− λ(~1T q − 1)

Its gradient:

∇L =
g(q)∇f(q)− f(q)∇g(q)

g2(q)
− λ~1

Derivatives are:

∂f(q)

∂qi
=

−pi(1− c)
[c+ (1− c)qi]2

,

∂g(q)

∂qi
=

pic

[c+ (1− c)qi]2

Placing it back:

pi
cf + (1− c)g

[c+ (1− c)qi]2
= λ

Thus for arbitrary i and j it holds that

pi
[c+ (1− p)qi]2

=
pj

[c+ (1− c)qj]2
=

λ

cf + (1− c)g

From this,

c+ (1− c)qi ∼
√
pi

Page 5 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

So the solution is

qi =
C
√
pi − c

1− c

Finding the constant:

n∑
i=1

C
√
pi − c

1− c
= 1,

C =
1 + c(n− 1)
√
p1 + · · ·+√pn

This solution doesn’t acknowledge qi ≥ 0, so it only works when qi ≥ 0 is globally optimal with respect
to q1 + · · ·+ qn = 1. On the other hand, it is “obvious” that if pi is non-increasing, so should be qi, thus
we can brute-force k such that qi = 0 for i > k and for i ≤ k we may use the solution above.

Overall complexity is O(n log n) due to sorting p1, . . . , pn.

Problem D. Triterminant

Formal statement Let A−1, A0, A1, A2, . . . , An be a sequence of polynomials such that

A−1 = 1, A0 = x,
Ak = x ·Ak−1 − bk ·Ak−2.

A sequence b1, b2, . . . , bn is called good if every coefficient of every Ak does not exceed 1 by absolute value.

You’re given c1, c2, . . . , cn such that ck ∈ {−1, 1}. You can multiply any ck by −1 in one operation.

What is the minimum number of operations needed to make c1, c2, . . . , cn good?

Observations Let’s multiply all bi with −1, so that the recurrence has + sign instead of −.
Let’s analyze how b1, . . . , bn affect coefficients of A1, . . . , An. Let aij = [xj]Ai, then

aij = a(i−1)(j−1) + bia(i−2)j .

Note that when both a(i−1)(j−1) and a(i−2)j are non-zero, bi must be such that aij = 0. From this follows,
that when fully expanded, every aij is either 0, or equates to a product of all elements of some subset
of the sequence b1, b2, . . . , bn. Keeping this in mind, we can, assuming b1, b2, . . . to be infinite, organize
all values of aij in a triangular shaped table, in which above the cell corresponding to aij are the cells
corresponding to a(i−1)(j−1) to the left and a(i−2)j to the right:

Page 6 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

On the picture above, for convenience, the polynomials are considered starting from A0 = 1 and A1 = x,
rather than A−1 = 1 and A0 = x to maintain the property degAk = k. Then, a special color designation
is used for each cell. If the corresponding coefficient must be non-zero, the cell is colored grey.

Otherwise, the color of the cell depends on the structure of its parents. Generally, each zero cell has t
non-zero parents in both directions (left and right). For example, the cell a62 has non-zero parents a40

and a51 to the left, and non-zero parents a42 and a22 to the right. So, on the picture above:

• White cells have 0 such parents (i. e. they are directly below cells that also have value 0),

• Red cells have 1 such parent on each side,

• Orange cells have 2 such parents on each side,

• Yellow cells have 4 such parents on each side,

• Green cells have 8 such parents on each side.

Note that when we descend from a grey node to the right into another grey node, it copies the value from
that node, and if we descend to the left into the node aij , it gets multiplied by bi. On the other hand, of a
non-grey node has t grey parents, they will also reach a common parent in t more steps. In other words,
each non-grey node aij with t > 0 grey parents defines an equation of form

bi−t−2(t−1)bi−t−2(t−2)bi−t−2(t−3) . . . bi−t + bibi−2bi−4 . . . bi−2(t−1) = 0.

The first summand here is obtained by multiplying t pieces of bk from the left path to the common parent,
and the second summand is obtained by multiplying t pieces of bk from the right path to the common
parent. For example, the cell a97 with t = 1 defines the equation b8 + b9 = 0, and the cell a62 defines the
equation b2b4 + b4b6 = 0. These equations are not in a very convenient form (yet), but adhering to them
is necessary and sufficient for aij to maintain the property that each aij is either −1, 0 or 1.

Note that, very conveniently, the equations defined by aij do not depend on j at all!

Page 7 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

Now, these equations may be simplified by induction. First of all, we should notice that red equations
only occur in odd i, so assuming i = 2k + 1 we may rewrite them as

b2k+1 + b2k = 0

for every k ≥ 1. What about orange equations? First such equation occurs in a62 with i = 6, where it
looks like b2b4 + b4b6 = 0 and repeats with steps of 4, where it writes as

b4k−2b4k + b4kb4k+2 = 0 ⇐⇒ b2(2k−1) + b2(2k+1) = 0.

First yellow equation occurs with i = 12 and repeats with steps of 8, and rewrites as

b8k−6b8k−4b8k−2b8k + b8k−2b8kb8k+2b8k+4 = 0.

On the other hand we know that b2(4k−3) + b2(4k−1) = 0 and b2(4k−1) + b2(4k+1) = 0, which rewrites

b8k−4b8k + b8kb8k+4 = 0 ⇐⇒ b4(2k−1) + b4(2k+1) = 0.

So, the equation with t = 2n−1 first occurs in i = 2n + 2n−1 and repeats every 2n steps, hence

b2nk−2(t−1) . . . b2nk + b2nk−(t−2) . . . b2nk+(t−2)b2nk+t = 0.

From this, we may by induction prove that such equation simplifies as

b2n−1(2k−1) + b2n−1(2k+1) = 0.

To do this, we should note that we may meticulously cancel out every odd multiplier until only two
multipliers are left in each summand, one of them being b2nk. For example, with t = 8, we start with

b16k−14b16k−12 . . . b16k−2b16k + b16k−6b16k−4 . . . b16k+6b16k+8 = 0.

On the first step, we cancel out the following pairs:

1. In the first summand, b2(8k−7) and b2(8k−5), then b2(8k−3) and b2(8k−1),

2. In the second summand, b2(8k−3) and b2(8k−1), then b2(8k+1) and b2(8k+3),

after which we’re left with the equation

b16k−12b16k−8b16k−4b16k + b16k−4b16kb16k+4b16k+8 = 0,

and we again cancel out:

1. In the first summand, b4(4k−3) and b4(4k−1),

2. In the second summand, b4(4k−1) and b4(4k+1),

after which we are left with

b16k−8b16k + b16kb16k+8 = 0 ⇐⇒ b8(2k−1) + b8(2k+1) = 0.

Formal proof for all n, k ≥ 1 is a bit tedious, but should follow from the procedure above.

Page 8 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

Solution Summarizing the above, we reduced everything to a set of equations:{
b2k+1 + b2k = 0, ∀k ≥ 1,

b2n(2k−1) + b2n(2k+1) = 0, ∀n, k ≥ 1,

which is necessary and sufficient for the specified condition to hold. For a given c1, . . . , cn it means that
we have at most O(n log n) constraints of kind “these two elements should have different colors”, which
may then be resolved by finding connected components of the graph defined like this, and comparing the
colors of its vertices in bipartite coloring to the given c1, . . . , cn, while choosing to recolor the minimum
number of them necessary to make it into proper coloring.

Note that the coloring always exists, because the constraints above define a forest.

Problem E. Garbage Disposal
You may always pair up garbage piece i with bin type i+ 1 and vice versa.

If R = L 6= 1, or if L ≡ R ≡ 0 (mod 2), disposal is impossible.

Otherwise, you may pair up i and i+ 1 as a “cross”, and also L,L+ 1, L+ 2 in a cycle shift.

Problem F. Palindromic Polynomial
Hints

1. Use the property of palindromic polynomial that A(x) = xdA(1/x).

2. Assume m = d + 1, and for every pair (x, y) in the input, there is also (x−1, y · x−n). Prove that
if you interpolate this polynomial, you will get a palindromic polynomial (although it might have
zero leading coefficients).

3. Try solving the problem when degree d is given.

4. Input may implicitly constrain d.

Step 1
Let’s call a polynomial A(x) =

∑d
i=0 aix

i “k-palindromic” if d ≤ k and for all i = 0 . . . k, ai = ak−i.

For example, A(x) = 2x4 + 3x3 + 3x2 + 2x is 5-palindromic, because [0, 2, 3, 3, 2, 0] is a palindrome.

Palindromic polynomial of degree k is k-palindromic.

Sum of k-palindromic polynomials is k-palindromic. Multiplying k-palindromic polynomial by a number
results in k-palindromic polynomial.

Lemma 1. If A(x) is k-palindromic and x 6= 0, then A(x) = xkA(x−1).

Proof:

A(x) =

d∑
i=0

aix
i =

d∑
i=0

ak−ix
i =

d∑
i=0

aix
k−i = xk

d∑
i=0

aix
−i = xkA(x−1).

The main idea of the solution is to leverage this property to complete the given set of points to a set
which for every x contains also x−1 and then interpolate the new set. Under certain conditions the result
of interpolation will be automatically palindromic.

Step 2. Interpolation
Let’s call a list of x-y pairs X = {(xi, yi)}i=1...m a “dataset”.

Let A = Interpolate(X) - a polynomial which is result of interpolation of dataset X, that is a polynomial
of smallest degree that passes through all points in the dataset. Then degA < |X|. Moreover, there exists
exactly one polynomial of degree less than |X| that satisfies X, and this polynomial is A.

Page 9 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

We propose to use Newton’s interpolating polynomials to calculate Interpolate(X). This method has
complexity O(|X|2).

Step 3
Let’s call a dataset k-palindromic if:

• All xi are distinct.

• It doesn’t contain point x = 0.

• For any i there is such j that xixj = 1 and yi = xki yj .

Lemma 2. Interpolating (m−1)-palindromic dataset of size m results in (m−1)-palindromic polynomial.

Proof. Let X = {(xi, yi)}i=1...m — (m − 1)-palindromic dataset. Let A(x) =
∑m−1

i=0 aix
i - the result of

interpolating it. Then degA ≤ m− 1 and A(xi) = yi for all (xi, yi) ∈ X.

Let A′(x) =
∑m−1

i=0 aix
m−1−i = xm−1A(x−1). It has degree at most m− 1.

For any i ∈ 1 . . .m, by definition of k-palindromic dataset,
A′(xi) = xm−1A(x−1) = xm−1

i A(xj) = xm−1
i yj = yi = A(xi), where xj = x−1

i .

Consider polynomial f(x) = A(x) − A′(x). It has degree at most m − 1. For i = 1 . . .m,
f(xi) = A(xi) − A′(xi) = A(xi) − A(xi) = 0. So, f(x) has at least m roots, but has degree at most
m− 1.

Polynomial of degree (m − 1) can have at most m − 1 roots, unless it’s constant zero. So, f(x) ≡ 0.
Therefore, A(x) ≡ A′(x), so A(x) is (m− 1)-palindromic.

Lemma 3. Interpolating m-palindromic dataset of size m, which does not contain point x=1 results
in m-palindromic polynomial.

Proof. Proof is almost identical to proof of Lemma 2.

Now degree of A′(x) and f(x) is at most m. But using the fact A(1) = A′(1) =
∑m−1

i=0 ai, we conclude
that f(x) has at least m + 1 roots (m points of dataset, plus x=1). So f(x) ≡ 0, which means A(x) is
palindromic.

Note. Polynomial from Lemma 3 will have degree less than m, so it will have a0 = am = 0.

Step 4. Preparing the dataset
Let X - the dataset in the problem input. Let’s pre-process it a follows:

• If it contains (0, 0) - there is no solution (because that would mean ad = a0 = 0).

• If it contains (0, y) - remove this point from the dataset and add it to a special one element dataset
X0 = {(0, y)}.

• If it contains (1, x) - do nothing (don’t add any new point or any constraint on d).

• If it contains (−1, y) - add constraint [y · (−1)d = y].

• If it contains (x, y), x 6= 0, x 6= ±1, but does not contain x−1, add additional point (x−1, x−dy).

• If it contains two points (x, y1) and (x−1, y2), add a constraint [y1 = xdy2].

So as a result we got:

• Dataset X ′. X ′ is d-palindromic. 0 ≤ |X ′| ≤ 2n. Some values in this set are symbolical expression,
depending on d, which is not known at this point.

• Dataset X0 which is either empty, or contains single pair (0, a0), a0 6= 0.

Page 10 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

• Set of constraints C on d, all of form [y1 = xdy2].

If there exists palindromic polynomial A of degree d which passes through all points in X, it also must
pass through points in X ′ ∪X0 and d must satisfy all the constraints in C.

Step 5. Solving for fixed d

Now let’s fix the degree of the desired polynomial to d ∈ [0, dmax], such that d satisfies all constraints in
C. Let’s try to solve the problem for given d. Now we can evaluate all values in X ′ which depended on d.

Denote m = |X ′|. There are 6 cases:

Case 1. d < m or (d = m and |X0| = 1).

In this case d < |X ′ ∪X0|. Let A(x) = Interpolate(X ′ ∪X0). If A has degree d and is palindromic, then
it’s the answer. Otherwise, there is no solution.

Proof. No polynomial of degree d, other than A(x), satisfiesX. So if A(x) doesn’t satisfy all the conditions,
no other polynomial of degree d will.

Warning. In this case we need to specifically check whether the interpolated polynomial is constant zero
(which can happen if d = 0. In this case we need to return “No solution” for given d.

Case 2. d = m,X0 = ∅, (1, y) /∈ X ′.
In this case solution always exists and is

A(x) = a0x
d +R(x) + a0,

where a0 6= 0 can be arbitrarily chosen (e.g. a0 = 1), and R(x) = Interpolate(X ′′),
X ′′ = {(x, y − a0(xd + 1))|(x, y) ∈ X ′}).
Proof. By Lemma 3, R(x) = Interpolate(X ′′) is m-palindromic and has r0 = rm = 0. So A(x) is
palindromic. A(x) satisfies datasetX ′, because A(xi) = a0x

d
i +R(xi)+a0 = a0(xdi +1)+yi−a0(xd+1) = yi.

Case 3. d = m,X0 = ∅, (x1 = 1, y1) ∈ X ′.
Assume that solution exists and is A(x). Let a0 = A(0). a0 6= 0, because a0 = ad 6= 0. Then
A(x) = Interpolate(X ∪ {(0, a0)}). Then it can be written using Lagrange interpolating polynomials
as:

A(x) = P (x) + a0L0(x),

where L0(x) = (x−x1)...(x−xm)
(0−x1)...(0−xm) - basis Lagrange polynomial polynomial for point x = 0,

P (x) = Interpolate({X ∪ {(0, 0)}}). Let’s explicitly evaluate both of them.

Numerator of L0(x) has degree m. It is a product of polynomials of form
(x − xi)(x − x−1

i) = x2 − (xi + x−1
i) + 1, maybe (x + 1), and necessarily (x − 1) (because X ′

contains 1). Product of palindromic polynomials is palindromic. So, L0(x) is product of palindromic
polynomial of degree m − 1 by (x − 1). So, ld = −l0 and lm 6= 0. What’s necessary for the proof is that
ld 6= l0.

Look at coefficients of A(x). It must be that a0 = am. So, p0 + a0l0 = pd = adld. Therefore, a0 = p0−pd
ld−l0 .

Now as we know a0, evaluate A(x). By construction it satisfies X ′. We need to check that it has degree
d and is palindromic. If so, it’s the answer. Otherwise, answer does not exist.

Case 4. d = m+ 2k − 1 (k ≥ 1).

In this case solution always exists and is

A(x) = a0x
d +R(x) · xk + a0,

where R(x) = Interpolate(X ′′), X ′′ = {(x, (y − a0(xd + 1)) · x−k)|(x, y) ∈ X ′}).

Page 11 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

Value a0 is taken from X0 if X0 6= ∅, otherwise a0 can be chosen arbitrarily, e.g. a0 = 1.

Proof. X ′′ is (m − 1)-palindromic dataset. By Lemma 2, R(x) is (m − 1)-palindromic polynomial of
degree at most m− 1. So, R(x) · xk is (m+ 2k − 1)-palindromic. Therefore, A(x) is palindromic as sum
of palindromic polynomials a0x

d + a0 and R(x).

Less formally, we are computing m coefficients of R, which are a palindrome, then adding k zeros on both
sides, and then appending a0 from both sides.

Case 5. d = m+ 2k (k ≥ 1), (1, y) /∈ X ′.
In this case solution always exists and is

A(x) = a0x
d +R(x) · xk + a0,

where R(x) = Interpolate(X ′′), X ′′ = {(x, (y − a0(xd + 1)) · x−k)|(x, y) ∈ X ′}).
Note that formula to compute solution is identical to the Case 4. Proof is alsmost identical, except we
must use Lemma 3 (that’s why we need to require that 1 is not in X ′).

Case 6. d = m+ 2k (k ≥ 1), (1, y1) ∈ X.

In this case solution always exists and is

A(x) = R(x) + b · S(x) · xk,

where R(x) is the solution for dataset with removed pair (1, y1) (see Case 4)

S(x) is a palindromic polynomial of degree m which is constructed in such a way that for all points xi in
dataset except 1, S(x) = 0, and S(1) 6= 0:

S(x) = (x− x2)(x− x3) . . . (x− xm) · (x+ 1).

Finally, b = y1−R(1)
S(1) .

Each case has time complexity O(m2 + d) = O(n2 + dmax) (recall that m ≤ 2n).

To summarize, if d meets all constraints in C and d > m, solution always exists. If d ≤ m, solution may
or may not exist.

Step 6. Putting it all together
We could just check all values d from 0 to dmax, and for every of them check if d satisfies all the constraints
and then check if solution exists. But that would be too long (O(dmax · n2)).

Instead, we can compute the set D of all d meeting all constraints in C by directly checking all values d
from 0 to dmax. This will take O(n · dmax) time. We could also use discrete logarithm and get complexity
O(n
√
M), but with given constraints that would not be faster.

If D is empty, then there is no solution.

If there is any d ∈ D, such that d > m, then just pick that d and solve for it using Case 4, 5 or 6. Solution
will always exist.

Otherwise, there will be exactly one d ≤ m which satisfies all the constraints in C (see Lemma 4). We
just need to check that value using Cases 1, 2 or 3. If solution exists for that d, output it. Otherwise there
is no solution.

So, we got solution which does O(n · dmax) preprocessing and then solves the problem for exactly one
value of d, which has complexity O(n2 + dmax). Overall complexity is O(n · dmax). This assumed that
arithmetical operations are O(1). If we account for the fact that divisions modulo MOD are done in
O(logMOD), the complexity is O(n · dmax · log(MOD)) .

Lemma 4. If D 6= ∅ and d ≤ m ∀d ∈ D, then |D| = 1.

Page 12 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

Proof. We will prove that if D has at least two numbers in [0,m] then it must have at least one more
number in [m+ 1, dmax].

Assume there are d1, d2 such that d1 < d2 ≤ m.

Every constraint has the form xdk = rk. If both d1 and d2 meet this constraint, then
xd1k = xd2k ⇒ xd2−d1k = 1. Denote ∆ = d2 − d1 ≤ m. Then for any integer k, xd1+k·∆ = xd1 = rk.
This applies for every constraint, so d1 + k ·∆ ∈ D.

Take k = dm+1−d1
∆ e. Denote d3 = d1 + ∆k. Then m+1−d

∆ ≤ k < m+1−d
∆ + 1 ⇒ m+ 1 ≤ d3 < m+ 1 + ∆.

Recall ∆ ≤ m and m ≤ 2n. So m+ 1 ≤ d3 ≤ 2m ≤ 4n.

As long as dmax ≥ 4n, this means that there exists d3 ∈ [m+ 1, dmax] that satisfies all the constraints.

In this problem n ≤ 1000, dmax = 10000, so condition dmax ≥ 4n is satisfied.

Problem G. Palindromic Differences
Hints

1. How to tell whether answer is 0 or at least 1?

2. Which permutations of the array preserve the property “difference array is a palindrome”?

3. Solve this problem for the case when a = [1, 2, . . . , n].

4. When answer is positive and all elements are distinct, answer is the same as for the case
a = [1, 2, . . . , n]. How to deal with possible duplicate elements?

Step 1 - Permutations
Let’s, for brevity, call an array whose difference array is a palindrome a good array.

Let’s consider the case when a = [1, 2, . . . , n]. Denote k = bn2 c. a itself is good.

There are two kinds of transformations which preserve the goodness of an array:

1. Swap two elements in mirror positions, i.e. ai and an+1−i.

2. Swap any two elements ai, aj , while also simultaneously swapping another two elements that are in
mirror positions to them, an+1−i, an+1−j .

It can be shown that all good arrays are reachable from [1, 2, . . . , n] by applying these operations.

In other words, a good array can be constructed in the following way. Consider k pairs:
(1, n); (2, n − 1); . . . ; (k, n + 1 − k). Elements of every pair must be inserted on mirror positions. If n
is odd, there will be also number k + 1 which must always be in (k + 1)-th position.

How many are there ways to construct a good array? There are k! ways to distribute pairs of permutations
among pairs of mirror positions. And there are additional 2k ways to swap elements in each pair. So the
answer is k! · 2k.
Step 2 - Arbitrary array, no duplicates
Now assume a can have arbitrary integer elements, but no duplicates. If there is a way to rearrange it to
make it good, then using the same operations as in Step 1 we can reach all good arrays.

Every good array has the property that elements in mirror positions are mirrored relative to the same
number mid: ai = mid−∆i, an+1−i = mid+ ∆i, i = 1 . . . k. In case of odd n the central element must be
equal mid.

So, to check whether array can be rearranged to become good, we can just sort it and check if sorted
array is good.

Page 13 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

Step 3 - Handling duplicates
Now assume array a is sorted, is good, but has duplicates. Then there are still k! · 2k permutations of this
array which are good, but some of those permutations are identical. How to account for that?

First, we need to replace k! with number of unique permutations of first k elements of a. This is the
multinomial coefficient k!

c1!c2!...cd! , where d is number of distinct values in a[1..k], c1, . . . cd are frequencies
of different values.

Second, we need to account for the fact that some swaps are swaps of distinct elements. So we need to
replace 2k with 2k−l, where l is the number of i ∈ [1, k] such that ai = an+1−i.

Step 4 - Solution
Sort the array a. Compute its difference array. if it is not a palindrome, the answer is 0.

Otherwise, the answer is

k!

c1!c2! . . . cd!
· 2k−l,

where k = bn2 c, d — the number of distinct elements in a[1..k], c1, c2, . . . cd — frequencies of distinct
elements in a[1..k], l — the number of i ∈ [1, k] such that ai = an+1−i.

Problem H. Graph Isomorphism
Graph has at most at most n graphs isomorphic to it ⇐⇒ it has at least (n − 1)! automorphisms.
This is a very specific limitation and for n > 4 it essentially means that either any permutation is an
automorphism, or all permutations with a certain fixed points are automorphisms.

For n > 4, the only graphs for which this is true are:

1. Empty graph;

2. “Star” graph;

3. “Star” graph complement;

4. Complete graph.

For n ≤ 4, one should manually check the number of graph’s automorphisms.

Problem I. DAG Generation
Let’s solve this problem for each possible DAG independently. What is the probability that it will be
generated?

It may be written as

number of outcomes in which the graph is generated
total number of outcomes

So, what exactly is an outcome of the generation? It is a DAG + one of its topological orderings. Note
that all outcomes are uniformly distributed, as there is exactly 1 way to get each of the outcomes.

What is the number of outcomes that produce the given graph? It is the number of its topological
orderings.

So, we need to sum up the following fraction over all DAGs:

(number of DAG’s topological orderings)2

(total number of outcomes)2

Page 14 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

Total number of outcomes may be shown to be 2(n2)n!. Indeed, for each of n! possible topological orderings
there are 2(n2) DAGs that are compatible with it. Thus, we should focus on the square number of DAG’s
topological orderings. Counting topological orderings for a specific graph is a difficult task. At the same
time, counting graphs for a given ordering is not.

The square of the number of DAG’s topological orderings is essentially the number of pairs of its orderings.
Using this, we may change the summation order and instead of counting pairs of orderings for each DAG,
we will count DAGs for each pair of orderings. Next observation is that we may fix the first ordering to
be e = (1, 2, . . . , n) and then multiply the number by n!, as we check for all possible values of the first
orderings and the sum over the second ordering will not change.

So, now we want to compute over all orderings p = (p1, p2, . . . , pn) the number of DAGs that satisfy both
p and e.

What is the set of vertices that may be connected with pi? They should come earlier than pi in both first
and second orderings. In other words, it is such vertices that j < i and pj < pi simultaneously. Counting
compatible DAGs over all permutations p yield the product:

(1)(1 + 2)(1 + 2 + 4)...(1 + 2 + ...+ 2n−1) = (21 − 1)(22 − 1)(23 − 1)...(2n − 1).

Here 1 + 2 + ...+ 2k−1 denotes all possible options for the number of {pj < pi, j < i} pairs with pi = k.

That being said, the final answer is

1− (21 − 1)(22 − 1) . . . (2n − 1)

2n(n−1)n!
.

Problem J. Persian Casino
Before all rewinds are used up, it is optimal to bet everything you got and amend in case it was not
successful. After that, we bet 1 coin until the end of the game. Indeed, before each roll we can decide if
we’re going to amend it in case it fails. If we’re going to amend it, it is optimal to bet everything, as we’re
guaranteed to win. Otherwise the expected value of winning is 0 regardless of how much we bet, so it is
optimal to bet 1 to avoid running out of money.

After that, the expected value of each bet is 0, so it doesn’t really matter how much to bet, if Prince may
guarantee that he doesn’t bankrupt.

If 2M < N −M , it would mean that prince may go broke in a very unlikely scenario and it should be
reported.

Otherwise the answer is the sum 2kpk for M ≤ k ≤ N , where pk is the probability that Prince uses M -th
rewind on k-th bet plus 2N times the probability that during the game he would lose less than M bets.
The later is

(
N
0

)
+
(
N
1

)
+ · · ·+

(
N

M−1

)
2N

.

And for pk, the formula is (k−1
M−1)
2k

.

That being said, the answer to the whole problem should be(
N

0

)
+

(
N

1

)
+ · · ·+

(
N

M − 1

)
+

(
N

M

)
.

Because summing up 2kpk together, we get

Page 15 of 16

Uni

Cup

Day 2: Oleksandr Kulkov Contest 3
1st OCPC, Winter 2023, Sunday, February 19, 2023

(
M − 1

M − 1

)
+

(
M

M − 1

)
+ · · ·+

(
N − 1

M − 1

)
=

(
N

M

)
It is also possible to rationalize it through dynamic programming.

Problem K. Determinant, or...?
The matrix described in such way is, generally, a block matrix[

A B
B B

]
,

where A and B are similar matrices of smaller size. From Gaussian elimination it is known that subtracting
one row of the matrix from another does not change its determinants, so we can start by subtracting the
bottom half of the rows from the upper one: [

A−B 0
B B

]
.

We may then repeat this process for A − B and B, until they’re bottom triangular, after which the
determinant is computed recursively as det(A−B) detB.

Problem L. Directed Vertex Cacti
The answer is exactly

((n2)
m

)
n!.

Arguably nicest way to obtain it:

For each of
((n2)
m

)
sets of non-cycle edges, there are exactly n! ways to pick their orientation and add some

cycles, so that one gets a directed cactus.

It is true for m = 0, because there are no non-cycle edges, and there are n! ways to connect some of the
vertices into cycles (corresponding to cycle presentation of a permutation). Now let’s say we showed that
there are n! ways for some graph G, and we add an edge (u, v) to the graph.

• If u and v belong to different comparable cycles, we orient the (u, v) edge in a single possible way;

• If u and v belong to different incomparable cycles, we orient the (u, v) edge from smaller vertex to
larger;

• If u and v belong to the same cycle, we apply the swap (uv) to the permutation represented by the
strongly connected components as cycles, and orient the (u, v) edge from larger vertex to smaller;

This procedure is revertible, hence there will be the same amount of ways to pick orientation and assign
cycles for all possible undirected graphs of non-cycle edges.

Problem M. Siteswap
Siteswap sequence a1, . . . , an defines a permutation pi ≡ i + ai (mod n). One needs to find cycles of the
permutation and check whether the cycle contains two elements of different parities. If it does, the ball
on the cycle changes hands. Otherwise it’s thrown by the same hand. Note that if balls do not change
hand, but n is odd, it would mean that half of balls go to the left hand and half of balls go to the right
hand, as hands alternate when the pattern is repeated.

Page 16 of 16

