
 

A.​ ​Accommodation​ ​Plan​ ​​(Roman​ ​Bilyi) 
 
Let’s count the number of arrangement such that vertex ​v is the highest among all vertices where all                  
friends can meet. Let ​A​v be the number of vertices ​u such that ​dist(v, u) ​≤ ​L​. Let ​B​v be the number of                       
vertices ​u such that ​dist(v, u) ​≤ L and ​dist(parent(v), u) > L​. We should add ​count(A​v​, k) - count(A​v -                     
B​v​,​ ​k)​​ ​to​ ​the​ ​answer,​ ​where​ ​​count(n,​ ​k)​ ​=​ ​n!/(n-k)!​. 
 
Let ​T(v, to) be the number of vertices ​u such that ​dist(v, u) ​≤ ​L and path from ​v to ​u ​starts with edge ​(v,                         
to). ​Here ​(v, to) is oriented edge of the tree (there are ​2N-2 such edges). Values ​T can be computed                    
using​ ​centroid​ ​decomposition,​ ​and​ ​values​ ​​A​v​,​ ​​B​v​​ ​can​ ​be​ ​expressed​ ​as​ ​a​ ​combination​ ​of​ ​​T​. 
 
B.​ ​Card​ ​Game​ ​​(Roman​ ​Bilyi) 
 
Let’s iterate over all divisors of ​N​. For any given divisor ​K​, check if it can be the number of suites (i.                      
e. it’s greater than or equal to the maximum given suite) and if the maximum number of occurrences                  
of any given suite is not greater than ​N/K​. If a single valid divisor is found, the answer is positive,                    
otherwise​ ​it’s​ ​negative. 
 
C.​ ​The​ ​Most​ ​Expensive​ ​Gift​ ​​(Roman​ ​Bilyi) 
 
One of the three letters appears at least ​n/3 times in the given string. So we have substring with cost                    
n​2​/9​. Now we need to iterate over all smaller values of cycle size. There are ​3^8+3^7+...+1 ​such                 
substrings​ ​possible.​ ​We​ ​can​ ​check​ ​every​ ​cycle​ ​in​ ​​O(n)​. 
 
D.​ ​Cut​ ​the​ ​Cake​ ​​(Vitalii​ ​Herasymiv) 
 
Let’s solve ​X and ​Y axes separately. We can sort all ​x​-coordinates and make cuts between coordinates                 
with indices ​k and ​k+1​, ​2k ​and ​2k+1, and so on (1-based index). The same for ​y​-coordinates, and after                   
that check if the cuts are valid (i. e. each part has exactly one candle). You can see that if the answer                      
exists,​ ​then​ ​this​ ​algorithm​ ​will​ ​find​ ​it.​ ​Otherwise,​ ​the​ ​validation​ ​will​ ​fail. 
 
E.​ ​Message​ ​​(Vitalii​ ​Herasymiv) 
 
Slow solution to the problem would be a dynamic programming with ​O(n​2​) running time, which is a                 
simple ​dp[postFirst][posSecond]​, where we can skip a character of the first string only if ​posSecond is                
before​ ​the​ ​first​ ​position​ ​of​ ​that​ ​character​ ​in​ ​the​ ​second​ ​string,​ ​or​ ​after​ ​the​ ​last​ ​one. 
 
Let’s divide the second string in 52 (26x2) positions of the first and the last occurrence of each                  
character. We can now actually process whole parts of second string at the same time instead of each                  
character separately. When a part in the second string is fixed, we know that some of the 26 characters                   
must be skipped in the first string, and some must be always taken. So if we skip those characters that                    

 



 

must be skipped, the check turns into string matching problem. So we can change our state to                 
dp[posFirst][partSecond]​,​ ​and​ ​check​ ​if​ ​a​ ​transition​ ​is​ ​valid​ ​using​ ​KMP​ ​algorithm​ ​or​ ​string​ ​hashing. 
 
F.​ ​Bad​ ​Word​ ​​(Roman​ ​Bilyi) 
 
If the initial string isn't a palindrome, the answer is 1. If the string has one of the following structure,                    
the​ ​answer​ ​is​ ​-1:​ ​​aaaaaaaa,​ ​ababababa,​ ​aaaabaaaa. 
 
Let's prove that in all other cases the answer is 2. Proof by contradiction. Let ​n be the length of the                     
string. Let ​a be the first letter. Let ​p be position of the first letter other than ​a​. Let's call such letter ​b                       
(0-indexing). We know that position ​p exists and ​p ​< n/2 (in other case string matches the 1st or the                    
3rd pattern). We know that ​s[n-1] = a and ​s[n-1-p] = b as our string is palindrome. Also, s[0..p] isn't a                     
palindrome so ​s[p+1..n-1] should be palindrome (otherwise we already found the answer 2). If ​p > 1                 
then s[0..p+1] also isn't a palindrome so ​s[p+2..n-1] should be palindrome. Both ​s[p+1..n-1] and              
s[p+2..n-1] should be palindromes and it's possible in only case that ​s[p+1..n-1] consists of the same                
letter. But it contradicts with ​s[n-1] = a ​and s[n-1-p] = b​. So the only possible case is ​p = 1​. That                      
means that the string is ​ab...ba​. Now ​s[0..1] isn't palindrome so ​s[2..n-1] should be palindrome. So                
the​ ​string​ ​should​ ​be​ ​​abab...ba​.​ ​We​ ​can​ ​continue​ ​this​ ​process​ ​and​ ​string​ ​will​ ​match​ ​the​ ​second​ ​pattern. 
 
G.​ ​Zenyk,​ ​Marichka​ ​and​ ​Interesting​ ​Game​ ​​(Roman​ ​Bilyi) 
 
We​ ​can​ ​take​ ​size​ ​of​ ​each​ ​pile​ ​modulo​ ​​A+B​.  
Then​ ​there​ ​are​ ​2​ ​solutions: 

1. There are only 4 types of piles: ​X < min(A,B)​; ​min(A, B) ​≤ ​X ​≤ ​max(A, B)​; max(A,B) ≤ ​X <                     
2min(A,B)​;​ ​​2min(A,B)​ ​≤​ ​X​.​ ​And​ ​we​ ​can​ ​find​ ​the​ ​winner​ ​analytically​ ​for​ ​all​ ​cases. 

2. Both players should always choose the biggest pile, so we can just iterate the process (no more                 
than ​2N moves). To prove this approach formally you have to examine all cases mentioned               
earlier, but the overall logic is the following. Consider the case ​A < B​, and let’s split all piles                   
on each turn in two types based on the number of stones ​X​: type 1 (​A ≤ X < B) and type 2 (​X ​≥                         
B​). ​The player A can use piles of both types, but first off he has to choose piles of type 2 if                      
possible (to try to minimize the number of moves the other player can make by spoiling type 2                  
piles, and possibly create new groups of type 1), and after that type 1 (which the other player                  
can’t use). Thus, choosing the maximum value on each turn for player A is an optimal strategy.                 
The other player can only use piles of type 2, and on each turn he want’s to choose the                   
maximum value to make sure player A makes fewer moves to type 2 piles and makes fewer                 
type​ ​1​ ​piles​ ​from​ ​piles​ ​of​ ​type​ ​2. 

 
The proof of “We can take size of each pile modulo A+B”: It’s obviously correct when second player                  
wins smaller game (make turn to the same pile as first player if it’s possible, or use his strategy in                    
smaller​ ​game​ ​otherwise).​ ​First​ ​player​ ​makes​ ​first​ ​move​ ​as​ ​in​ ​smaller​ ​game​ ​and​ ​becomes​ ​second. 
 
H.​ ​Frog​ ​Jumping​ ​​(Vitalii​ ​Herasymiv) 

 



 

  
If there is some set of frogs that can make it to the end without big jumps, then the other frogs can                      
jump straight from the first to the last stones. So the subtask is to find the maximum number of frogs                    
that can make it to the end simultaneously without big jumps. This can can be solved in the following                   
way: consider ‘window’ of size ​d​, and for each position of the window count the number of stones in                   
it. Then the answer to the subtask is the minimum of those values. (Another way to find the answer is                    
to use binary search and greedy). Those frogs that cost the most should go for it without big jumps,                   
and​ ​the​ ​others​ ​–​ ​straight​ ​jump​ ​from​ ​the​ ​first​ ​to​ ​the​ ​last. 
 
If no frog can make it without big jumps, it can be easily proven (by examining a contradictory                  
situation) that the optimal way is to make the cheapest frog jump over all stones, while the rest of the                    
frogs​ ​jump​ ​straight​ ​from​ ​the​ ​first​ ​to​ ​the​ ​last. 
 
I.​ ​Slot​ ​Machine​ ​​(Roman​ ​Bilyi) 
  
Let ​S(X) be the number of distinct balls in box ​X​. Let’s look at the worst-case sequence of moves.                   
Consider the case that 2 winning balls are from the same box. In such case answer is ​min(S(X)+1) over                   
all boxes that contain at least one pair of same balls. Now we can leave only one ball of each color                     
(apply​ ​unique​ ​operation​ ​to​ ​each​ ​box). 
 
Let’s transform worst-case sequence such that the answer wouldn’t be worse. Let ​LastB be the box in                 
such​ ​sequence. 

1. Let ​Q be such moment of time when we firstly took some color that box ​LastB also has it. We                    
can​ ​delete​ ​every​ ​choice​ ​of​ ​​LastB​​ ​before​ ​that​ ​moment. 

2. We​ ​can​ ​choose​ ​only​ ​​LastB​​ ​after​ ​that​ ​moment. 
3. Mathematical induction can be applied. So the sequence of moves are: make turns to some box,                

then​ ​switch​ ​the​ ​box​ ​only​ ​after​ ​the​ ​first​ ​moment​ ​when​ ​we​ ​get​ ​same​ ​color​ ​that​ ​has​ ​new​ ​box. 
4. Such​ ​chain​ ​of​ ​boxes​ ​consists​ ​of​ ​2​ ​boxes. 

So the solution is: iterate over the first box. Let ​C​i be the colors of balls in this box and ​D​i equals the                       
minimal size of box that also contains ​C​i​. Since we are anticipating the worst case scenario, sort all ​D                   
in non-increasing order, i. e. D​1 ≥ D​2 ≥ … ≥ D​k​. Then the answer (for the selected first box) can be                      
found​ ​as​ ​the​ ​minimum​ ​of​ ​values​ ​D​1​​ ​+​ ​1,​ ​D​2​​ ​+​ ​2,​ ​...,​ ​D​k​​ ​+​ ​k. 
 
J.​ ​​ ​Half​ ​is​ ​Good​ ​​(Vitalii​ ​Herasymiv) 
 
For each vertex, find the edge with the smallest weight that goes from that vertex. Any edge can occur                   
at most twice, so it’s enough for a half of spanning forest. It’s correct because, since the spanning                  
forest is unique, and starting a Prim’s algorithm from any vertex would selected the smallest edge on                 
the​ ​first​ ​iteration,​ ​each​ ​such​ ​edge​ ​is​ ​guaranteed​ ​to​ ​be​ ​in​ ​the​ ​minimum​ ​spanning​ ​forest. 
 
K.​ ​Dance​ ​​(Vitalii​ ​Herasymiv) 
 

 



 

Let’s say that each girl has already moved ​d to the left, and now each of them must stay on the same                      
spot or move ​2d to the right. Obviously, we have to group them in such a way that each group has only                      
consecutive girls. Also note that the difference between the leftmost and the rightmost possible              
coordinates​ ​(after​ ​all​ ​girls​ ​move)​ ​cannot​ ​be​ ​greater​ ​than​ ​200. 
 
Now, let’s say that the girls are not moving, and we have to cover some of the 200 coordinates in such                     
a way that for each girl with position ​x​, positions ​x or ​x+2d are covered. Also, let’s consider that                   
consecutive covered positions are forming range, the size of which we will use for cost calculation (as                 
r-l​).​ ​Any​ ​consecutive​ ​pair​ ​of​ ​uncovered​ ​and​ ​covered​ ​points​ ​indicate​ ​a​ ​start​ ​of​ ​a​ ​range. 
 
Now​ ​two​ ​cases​ ​are​ ​possible: 

1. 2d ≤ 20: solve the problem using simple ​dp[pos][mask]​, where ​pos is the current position, and                
mask is the state of last ​2d cells (covered/uncovered). All necessary costs calculations and              
checks​ ​can​ ​be​ ​easily​ ​done​ ​with​ ​such​ ​state.​ ​The​ ​number​ ​of​ ​states​ ​is​ ​at​ ​most​ ​200x2​20​. 

2. 2d > 20: solve similar dp, but first off, cover positions ​0​, ​2d​, ​4d​, etc (not more that 10 of those),                     
after that, cover ​1​, ​2d+1​, ​4d+1, etc. So this is kind of a “broken profile” dp, and you also need                    
to save the coverage of the first block (to match it with the last), so the total number of states is                     
also​ ​200x2​20​. 

 
L.​ ​Impress​ ​Her​ ​​(Vitalii​ ​Herasymiv) 
 
To avoid ​O(n​4​) running time, fix one bounding box first, and then iterate over all cells inside of it and                    
check the corresponding pair of bounding boxes. Let’s denote the sizes of connected components as ​s​1​,                
s​2​, …, s​k​, and ​s​1 + s​2 + … + s​k = n​2​. We can make a upper bound on the total area of bounding boxes:                          
ns​1​​ ​+​ ​ns​2​​ ​+​ ​…​ ​+​ ​ns​k​​ ​​ ​≤​ ​n​3​,​ ​which​ ​proves​ ​that​ ​the​ ​running​ ​time​ ​of​ ​the​ ​algorithm​ ​is​ ​​O(n​3​). 
 
 

 


