
XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem A. Piece of Cake
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 1 gibibyte

Alice received a cake for her birthday! Her cake can be described by a convex polygon with n vertices. No three
vertices are collinear.

Alice will now choose exactly k random vertices (k≥3) from her cake and cut a piece, the shape of which is the
convex polygon defined by those vertices. Compute the expected area of this piece of cake.

Input

Each test case will begin with a line with two space-separated integers n and k (3≤k≤n≤2 500), where n is the
number of vertices of the cake, and k is the number of vertices of the piece that Alice cuts.

Each of the next n lines will contain two space-separated real numbers x and y (−10.0≤x, y≤10.0), where (x, y)
is a vertex of the cake. The vertices will be listed in clockwise order. No three vertices will be collinear. All real
numbers have at most 6 digits after the decimal point.

Output

Output a single real number, which is the expected area of the piece of cake that Alice cuts out. Your answer will
be accepted if it is within an absolute error of 10−6.

Example

standard input standard output

4 3

0 0

1 1

2 1

1 0

0.50000000

5 5

0 4

4 2

4 1

3 -1

-2 4

12.50000000

5 3

-1.20 2.80

3.30 2.40

3.10 -0.80

2.00 -4.60

-4.40 -0.50

12.43300000

Page 1 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem B. Busy Board
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 1 gibibyte

Remember the busy boards for toddlers that have an array of holes into which to hammer pegs of various shapes?
There’s a new, electronic version. The board consists of a 2D grid of pegs. Each peg on the board can be either up
or down, but not both simultaneously. You can pick any peg that is currently up, and “hammer” it down. This
will push that peg down, and also raise all of the other pegs in its row, and its column, regardless of their current
state. You cannot “hammer” a peg that is down (well, maybe you can, but it will have no effect). Those poor kids
will never get all the pegs down at one time!

This example shows what happens when the top right peg is “hammered.” (◦ = up, • = down)

A substitute teacher wants to challenge her class. She uses the “Teacher Mode” to set up the board in a particular
configuration, and then asks her students to see if they can get the board to a second configuration by hammering
some (perhaps none) of the pegs.

That may be too tough of a problem for toddlers, but maybe you can handle it.

Input

Each test case will begin with a line with two space-separated integers r and c (1≤ r, c≤ 1 000), which are the
dimensions of the board.

Each of the next r lines will have exactly c characters, consisting only of capital ‘O’ (representing a peg that is up),
capital ‘X’ (representing a peg that is down), and no spaces or other characters. This is the starting configuration.

Following this, each of the next r lines will have exactly c characters, consisting only of capital ‘O’ (representing a
peg that is up), capital ‘X’ (representing a peg that is down), and no spaces or other characters. This is the target
configuration.

Output

Output a single integer, 1 if it is possible to reach the target configuration from the starting configuration, and 0
if it is impossible.

Example

standard input standard output

4 2

XO

OX

XO

OX

OX

OO

XO

OO

1

2 4

XXXX

XXXX

XOOO

OOOO

0

Page 2 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem C. Cost of Living
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 1 gibibyte

A newspaper columnist recently wrote a column comparing Disneyland’s price increases to other things in the
economy; e.g., If gasoline were to have increased at the same rate as Disneyland’s admission since 1990, it would
cost $6.66 per gallon.

Consider the prices of a number of commodities over a number of consecutive years. There is an inflation rate
(inflation(x)>0) for year x to the next year (x+1). Also, each commodity A has a modifier (modifier(A)>0) that
is fixed for that commodity. So, for commodity A in year x+1:

price(A, x+1)=price(A, x) · inflation(x) ·modifier(A)

Unfortunately, the modifiers are unknown, and some of the prices and inflation rates are unknown.

Given some inflation rates, the prices for a number of commodities over a number of consecutive years, and some
queries for prices for certain commodities in certain years, answer the queries.

Input

Each test case will begin with a line with three space-separated integers y (1≤y ≤ 10), c (1≤c≤100), and q
(1≤ q≤y·c), where y is the number of consecutive years, c is the number of commodities, and q is the number of
queries to answer.

Each of the next y−1 lines will contain a single real number r (1.0≤ r≤1.5, or r=−1.0), which are the inflation
rates. A value of −1.0 indicates that the inflation rate is unknown. The first inflation rate is the change from year
1 to year 2, the second from year 2 to year 3, and so on. Known inflation rates will conform to the limits specified;
unknown but uniquely determinable inflation rates may not, and are only guaranteed to be strictly greater than
zero.

Each of the next y lines will describe one year’s prices. They will contain c space-separated real numbers p
(1.0 < p < 1 000 000.0, or p = −1.0), which indicate the price of that commodity in that year. A value of −1.0
indicates that the price is unknown.

Each of the next q lines will contain two space-separated integers a (1≤a≤c) and b (1≤b≤y), which represent a
query for the price of commodity a in year b. All queries will be distinct.

All prices that can be uniquely determined will be strictly greater than zero and strictly less than 1 000 000.0.
Values for prices and inflation rates in the input may not be exact, but will be accurate to 10 decimal places. All
real values contain no more than 10 digits after the decimal point.

Output

Produce q lines of output. Each line should contain a single real number, which is the price of the given commodity
in the given year, or −1.0 if it cannot be determined. Answer the queries in the order that they appear in the
input. Your answers will be accepted if they are within an absolute or relative error of 10−4.

Example

standard input standard output

4 2 2

1.3333333333

1.2500000000

-1

3.00 -1

4.00 8.00

5.00 10.00

-1 11.00

2 1

1 4

6.0000000000

5.5000000000

Page 3 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem D. It’s a Mod, Mod, Mod, Mod World
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 1 gibibyte

You are given multiple problems with three integers p, q, and n. Find
n∑

i=1

[(p·i) mod q]. That is, the first n multiples

of p, modulo q, summed. Note that the overall sum has no modulus.

Input

Each input will begin with a line with a single integer W (1≤W≤105), which is the number of cases you must
solve.

Each of the next W lines will contain three space-separated integers p, q and n (1≤p, q, n≤106), which are the
parameters of the problem as described above.

Output

Output W lines, each with the answer for a given instance of the problem, in the order that they appear in the
input.

Example

standard input standard output

3

2 7 2

1 4 5

3 8 10

6

7

37

Page 4 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem E. Monotony
Input file: standard input

Output file: standard output

Time limit: 10 seconds
Memory limit: 1 gibibyte

You are given an r×c grid. Each cell of this grid is filled with a number between 1 and r·c inclusive, and each cell’s
number is distinct.

Define a grid of numbers to be monotonic if each row and column is either increasing or decreasing (this can be
different for each row or column).

Define a subgrid of the grid as follows: First choose some nonempty subset of the rows and columns. Next, take
elements that lie in both the chosen rows and columns in the same order.

There are (2r−1)(2c−1) nonempty subgrids of the given grid. Of these subgrids, count how many are monotonic.

Consider this grid:

1 2 5

7 6 4

9 8 3

There are nine 1×1 subgrids, nine 1×2’s, three 1×3’s, nine 2×1’s, nine 2×2’s, three 2×3’s, three 3×1’s, three 3×2’s,
and one 3×3. They are all monotonic, for 9+9+3+9+9+3+3+3+1 = 49 monotonic subgrids.

Input

Each test case will begin with a line with two space-separated integers r and c (1 ≤ r, c ≤ 20), which are the
dimensions of the grid.

Each of the next r lines will contain c space-separated integers x (1≤x≤r·c, all x’s are unique). This is the grid.

Output

Output a single integer, which is the number of monotonic subgrids in the given grid.

Examples

standard input standard output

Page 5 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem F. Heaps of Fun
Input file: standard input

Output file: standard output

Time limit: 3 seconds
Memory limit: 1 gibibyte

Consider a rooted tree with n nodes, numbered 1..n. Each node will have a fixed integer b, and for each, a uniform
random real number is chosen in the interval [0..b].

What is the probability that the random numbers chosen cause the tree to form a Heap (i.e., the random value in
each node is less than the random values in its children)?

This probability can always be expressed as a rational number P
Q , with Q6≡0 (mod 109+7). You are to output the

probability as P ·Q−1 mod 109+7, where Q−1 is an integer, which is the multiplicative inverse of Q modulo 109+7
(Q·Q−1≡1 (mod 109+7)). (Note: P ·Q−1 mod 109+7 does not depend on whether P and Q are relatively prime,
only on their ratio P

Q .)

Input

Each test case will begin with a line with a single integer n (1≤n≤300), which is the number of nodes in the tree.

Each of the next n lines will contain a pair of space-separated integers b (1≤b≤109) and p (0≤p≤n) describing a
node of the tree, where b is the fixed integer value in the node and p is the node number of its parent. The nodes
are listed in order; node 1 is first, then node 2, and so on. A single node will have a parent p=0. This is the root
of the tree.

Output

Output a single integer, which is the probability expressed as (P ·Q−1) mod (109+7).

Examples

standard input standard output

2

1000000000 0

1000000000 1

500000004

5

2 3

2 3

1 0

2 3

2 3

87500001

Page 6 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem G. Intersecting Rectangles
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 1 gibibyte

You are given a set of n axis-aligned rectangles in a 2D plane. For this problem, two rectangles are considered
to intersect if their boundaries contain any common points (in particular, two nesting rectangles don’t count as
intersecting). Determine if some pair of rectangles intersect.

In this example, only rectangles A and B intersect.

Input

Each test case will begin with a line with a single integer n (1≤n≤105), which is the number of rectangles.

Each of the next n lines will contain four space-separated integers:

x1 y1 x2 y2

(−109≤x1, y1, x2, y2≤109, x1<x2, y1<y2), which describe a rectangle, where (x1, y1) is the lower left corner and
(x2, y2) is the upper right corner. All x values will be distinct. All y values will be distinct.

Output

Output a single integer, which is 1 if some pair of rectangles intersect, 0 if no pair of rectangles intersect.

Examples

standard input standard output

3

0 0 2 2

1 1 3 4

5 7 6 8

1

4

0 0 20 20

1 1 3 4

2 10 9 12

11 3 19 18

0

Page 7 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem H. Rocket Powered Hovercraft
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 1 gibibyte

You are programming an autonomous rocket powered hovercraft. The vehicle can travel very, very fast, but turning
is difficult. Since it’s hovering, it turns by firing directional thrusters, which will turn the vehicle whether it is
moving forward or is stationary.

The salt flats on which you’re testing have been mapped with a 2D Cartesian grid. The hovercraft starts at location
(0,0) on this grid, facing in the positive X direction. Your job is to get the vehicle to another location (x,y) on the
flats.

The hovercraft has a fixed ground speed v miles per second and a fixed rate of rotation w radians per second.
Due to the power of the rockets both for acceleration and deceleration, it can attain its maximum speed virtually
instantaneously, and come to a stop from maximum speed just as quickly. Likewise, it can begin rotating at its
fixed rate instantaneously, and stop just as quickly. It can rotate either clockwise or counter-clockwise.

You must figure out the minimum amount of time to get the vehicle to its target. The program which controls the
vehicle can start forward motion, stop forward motion, start rotating, and stop rotating, each exactly once. Note
that starting/stopping forward movement can be independent of starting/stopping rotation.

Input

Each test case will consist of exactly two lines.

The first line will contain two space-separated integers x and y (−1 000≤x, y≤1 000, (x,y) 6=(0,0)), which indicate
the location on the grid mapped onto the flats that you are trying to reach, in units of miles.

The second line of input will contain two space-separated real numbers with exactly two decimal places: v
(0.01 ≤ v ≤ 10.00) and w (0.01 ≤ w ≤ 10.00), where v is the fixed speed of travel in miles per second, and w
is the fixed rate of rotation in either direction in radians per second.

Output

Output a single real number, which is the minimum amount of time (in seconds) it would take get the hovercraft
from (0,0) to (x,y) subject to the constraints. Your answer will be accepted if it is within an absolute error of 10−3.

Example

standard input standard output

20 0

1.00 0.10

20.00000000

-10 10

10.00 1.00

3.14159265

0 20

1.00 0.10

28.26445910

-997 -3

5.64 2.15

177.76915187

Page 8 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem I. Cutting Strings
Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 1 gibibyte

You are given a string s and an integer k. You can remove at most k non-intersecting substrings from s. Your task
is to find the alphabetically (i.e., dictionary order) largest resulting string.

For example, with string abcdcada and k=2, you can choose the substrings [abc]d[ca]da and remove them to
get dda.

Input

Each input will begin with a line with a single integer c (1≤ c≤ 2·105), which is the number of cases you must
solve.

Each of the next c lines will contain an integer k and a string s (1≤k≤|s|≤105, s∈ [a−z]∗), separated by a space.

The total length of all strings in the input will be at most 106.

Output

Output the largest string, alphabetically, that you can get by removing k or fewer non-intersecting substrings from
s.

Example

standard input standard output

4

2 abcdcada

1 ababb

2 ababb

1 dadbdcdbdad

dda

bb

bbb

ddcdbdad

Page 9 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem J. Subsequences in Substrings
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 1 gibibyte

You are given two strings s, and t. Count the number of substrings of s that contain t as a subsequence at least
once.

Note that a substring and a subsequence both consist of characters from the original string, in order. In a
substring, the characters must be contiguous in the original string, but in a subsequence, they are not required to
be contiguous. In the string abcde, ace is a subsequence but not a substring.

If s is aa and t is a, then the answer is 3: [a]a, [aa], and a[a].

Input

Each test case will consist of exactly two lines.

The first line will contain string s (1≤|s|≤105, s∈ [a−z]∗), with no other characters.

The second line will contain string t (1≤|t|≤100, |t|≤|s|, t∈ [a−z]∗), with no other characters.

Output

Output a single integer, which is the number of substrings of s that contain t as a subsequence at least once.

Examples

standard input standard output

abcdefghijklmnopqrstuvwxyz

a

26

abcdefghijklmnopqrstuvwxyz

m

182

penpineappleapplepen

ppap

68

Page 10 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem K. Knight of the Tarot Cards
Input file: standard input

Output file: standard output

Time limit: 10 seconds
Memory limit: 1 gibibyte

Consider an infinite chessboard and a special knight whose move types can change given power-ups. The knight is
trying to reach square (0, 0).

Some of the squares of the infinite chessboard have tarot cards on them. If the knight lands on some position
(r, c) on the infinite chessboard with a tarot card on it, then the knight has the option of buying that card at that
position. Each tarot card will have a price, and will have two integer values written on it. The tarot card with
values a and b written on it allow the knight to make relative jumps:

(−a,−b) (a,−b) (−a, b) (a, b) (b, a) (−b, a) (b,−a) (−b,−a)

The knight retains all cards he purchases and can make relative moves from any of the cards he owns any number of
times. The knight must only pay when obtaining cards and can perform jumps at no additional cost. For example,
if he buys a card with 3 and 2 and another card with 8 and 4, he may jump by (−2, 3), and from there jump by
(8, 4), and later jump by (−3, 2). Of course, he cannot make a jump (a, b) until after he arrives at a square with a
tarot card with a and b on it, and purchases that card.

Given positions of the tarot cards on the board and their prices, find the least amount that the knight must pay
to reach square (0, 0).

Input

Each test case will begin with a line containing a single integer n (1≤n≤1 000), which is the number of tarot cards
on the chessboard.

Each of the next n lines contains a description of a tarot card in five space-separated integers:

r c a b p

(−109≤r, c≤109, 1≤a, b, p≤109), where (r, c) is the location of the tarot card, a and b are the offset values, and p
is the price of the card.

The first tarot card is the initial position of the knight. Multiple tarot cards may exist at the same location. The
knight must have a tarot card to move.

Output

Output a single integer, which is the minimum cost for the knight to reach the goal at (0, 0). Output −1 if it is
not possible to reach the goal.

Examples

standard input standard output

2

3 3 2 2 100

1 1 1 1 500

600

2

2 0 2 1 100

6 0 8 1 1

100

3

1 0 100 50 100

1 50 50 25 100

26 0 20 30 123

-1

Page 11 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem L. Planes, Trains, but not Automobiles
Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 1 gibibyte

Being a traveling salesman is tough work. Per is one such salesman and would like to find an efficient way to visit
all the cities in a foreign country exactly once.

Per defines efficiency in a peculiar way as Per hates flying on planes. Even worse, he absolutely refuses to use
automobiles. Per’s favorite mode of transportation is trains. He will gladly take trains for as long as possible.

The train system in this country is very peculiar, and very limited. Train lines are all one-way, and once anyone
takes a train out of a city, there is no sequence of train lines that return to that city. This is because the country
is trying to make money off of the more costly planes. In this country, every city has exactly one airport, so you
can travel by plane from any city to any other city.

Per doesn’t just want to know the minimum number of flights he needs. He also wants to know in which cities he
can visit the airport during some trip with fewest flights. Per likes airport restaurants, you see, and would like to
know which restaurants he can visit, so he can choose his route to visit his favorites. He can visit the airport if he
flies in or out of the city. Note that Per can start in any city.

Consider this country with four cities, with the arrows representing one-way train routes:

There are several possible trips Per could take, but he’s going to need to fly at least once. Here are some (but not
all) possible routes with fewest flights, with → indicating a train trip and ⇒ indicating a flight:

1→ 2→ 4⇒ 3

2→ 4⇒ 1→ 3

1→ 3→ 4⇒ 2

In this example, every airport is visited on at least one of the routes. Per has the option to choose his route so he
can visit any airport restaurant he wishes.

Input

Each test case will begin with a line with two space-separated integers n (1≤n≤105) and m (0≤m≤105), where
n is the number of cities and m is the number of train lines. The cities are numbered 1..n.

Each of the next m lines contains two space separated integers a and b (1≤ a, b≤ n, a 6= b), which indicates that
there is a train line from city a to city b (but not back). All train lines will be distinct.

Output

Produce exactly two lines of output.

On the first line, output a single integer, which is the minimum number of flights Per must take to visit all of the
cities.

On the second line, output a list of space-separated integers, which are the cities with airports he can visit. If he
can visit an airport on any one of the routes with the minimum number of flights, it should be listed. Output
these numbers in increasing order. If no airports are to be visited, output a blank line.

Page 12 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Example

standard input standard output

4 4

1 2

1 3

2 4

3 4

1

1 2 3 4

4 3

1 2

2 3

3 4

0

Page 13 of 14

XIX Open Cup named after E.V. Pankratiev
Stage 14: Grand Prix of America, Div 1, Sunday, March 3, 2019

Problem M. XOR Sequences
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 1 gibibyte

Suppose you are given two integers, m and n. You are also given a list of n distinct integers x1, x2, . . . , xn, with
0≤ xi ≤ 2m−1. For each number y from 0 to 2m−1, you’ve found the number py such that xpy

has a maximum
bitwise-XOR with y. That is, y⊕xpy

>y⊕xi for all i=1..n, i 6=py (⊕ means bitwise-XOR).

Now, consider the reverse problem. Given m, n, and the sequence p0, p1, . . . , p2m−1, count the number of sequences
of distinct integers x1, x2, . . . , xn that could have generated that p sequence from the above algorithm. Two x
sequences are different if there is some i such that xi in one sequence is different from xi in the other sequence.
Output this count modulo 109+7.

Input

Each test case will begin with a line with two space-separated integers m (0≤m≤ 16) and n (1≤n≤ 2m), where
2m is the length of the p sequence, and n is the length of the x sequences.

Each of the next 2m lines will contain a single integer p (1 ≤ p ≤ n). These are the values of the sequence
p0, p1, . . . , p2m−1, in order. Every value from 1 to n inclusive will appear at least once.

Output

Output a single integer, which is the number of sequences x1, x2, . . . , xn which could have generated the sequence
p0, p1, . . . , p2m−1 from the above algorithm, modulo 109+7.

Examples

standard input standard output

3 6

1

1

2

2

3

4

5

6

4

2 3

1

2

1

3

0

3 8

1

2

3

4

5

6

7

8

1

Page 14 of 14

