2010年山东省信息学奥赛省队第一轮选拔

第二试

竞赛时间: 2010年4月18日上午8:00-12:30

题目名称	地精部落	粟粟的书架	星际竞速
提交文件名	goblin	susu	starrace
输入文件名	goblin.in	susu.in	starrace.in
输出文件名	goblin.out	susu.out	starrace.out
每个测试点时限	1s	3s	3s
内存限制	128M	512M	128M
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	无	无	无
题目类型	传统	传统	传统

提交源程序需加后缀

对于 Pascal 语言	goblin.pas	susu.pas	starrace.pas
对于C语言	goblin.c	susu.c	starrace.c
对于 C++语言	goblin.cpp	susu.cpp	starrace.cpp

注意: 最终测试时, 所有编译命令均不打开任何优化开关

地精部落

【问题描述】

传说很久以前,大地上居住着一种神秘的生物:地精。

地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个<u>独一无二</u>的高度 H_i ,其中 H_i 是 1 到 N 之间的正整数。

如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。

类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆 不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。

地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮 流担当瞭望工作,以确保在第一时间得知外敌的入侵。

地精们希望这N段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足这个条件的整座山脉才可能有地精居住。

现在你希望知道,长度为N的可能有地精居住的山脉有多少种。两座山脉A和B不同当且仅当存在一个i,使得 $A_i \neq B_i$ 。由于这个数目可能很大,你只对它除以P的余数感兴趣。

【输入格式】

输入文件 goblin.in 仅含一行,两个正整数 N, P。

【输出格式】

输出文件 goblin.out 仅含一行,一个非负整数,表示你所求的答案对 P 取余 2 后的结果。

【样例输入输出】

goblin.in	goblin.out
4 7	3

说明: 共有 10 种可能的山脉,它们是:

1<u>324</u> 1<u>423</u> <u>2143</u> 2<u>314</u> 2<u>413</u> 3142 3241 3412 4132 4231

其中加下划线的数位表示可以设立瞭望台的山峰,其他表示可以设立酒馆的 山谷。

【数据规模和约定】

对于 20%的数据, 满足 $N \leq 10$:

对于 40%的数据,满足 $N \leq 18$;

对于 70%的数据,满足 *N*≤550;

对于 100%的数据,满足 3 \leq N \leq 4200, $P\leq$ 10 9 。

粟粟的书架

【问题描述】

幸福幼儿园 B29 班的粟粟是一个聪明机灵、乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章。粟粟家中有一个 R 行 C 列的巨型书架,书架的每一个位置都摆有一本书,上数第 i 行、左数第 j 列摆放的书有 $P_{i,i}$ 页厚。

粟粟每天除了读书之外,还有一件必不可少的工作就是摘苹果,她每天必须摘取一个指定的苹果。粟粟家果树上的苹果有的高、有的低,但无论如何凭粟粟自己的个头都难以摘到。不过她发现,如果在脚下放上几本书,就可以够着苹果;她同时注意到,对于第 *i* 天指定的那个苹果,只要她脚下放置书的总页数之和不低于 *H_i*,就一定能够摘到。

由于书架内的书过多,父母担心粟粟一天内就把所有书看完而耽误了上幼儿园,于是每天只允许粟粟在一个特定区域内拿书。这个区域是一个矩形,第 i 天给定区域的左上角是上数第 $x1_i$ 行的左数第 $y1_i$ 本书,右下角是上数第 $x2_i$ 行的左数第 $y2_i$ 本书。换句话说,粟粟在这一天,只能在这($x2_i-x1_i+1$)×($y2_i-y1_i+1$)本书中挑选若于本垫在脚下,摘取苹果。

粟粟每次取书时都能及时放回原位,并且她的书架不会再撤下书目或换上新书,摘苹果的任务会一直持续 M 天。给出每本书籍的页数和每天的区域限制及采摘要求,请你告诉粟粟,她每天至少拿取多少本书,就可以摘到当天指定的苹果。

【输入格式】

输入文件 susu.in 第一行是三个正整数 R. C. M。

接下来是一个R行C列的矩阵,从上到下、从左向右依次给出了每本书的页数 $P_{i,i}$ 。

接下来 M 行,第 i 行给出正整数 $x1_i$, $y1_i$, $x2_i$, $y2_i$, H_i ,表示第 i 天的指定区域是($x1_i$, $y1_i$)与($x2_i$, $y2_i$)间的矩形,总页数之和要求不低于 H_i 。

保证 $1 \le x 1_i \le x 2_i \le R$, $1 \le y 1_i \le y 2_i \le C$ 。

【输出格式】

输出文件 susu.out 有 M 行,第 i 行回答粟粟在第 i 天时为摘到苹果至少需要拿取多少本书。如果即使取走所有书都无法摘到苹果,则在该行输出"Poor QLW"(不含引号)。

【样例输入输出1】

susu.in	susu.out
5 5 7	6
14 15 9 26 53	15
58 9 7 9 32	2
38 46 26 43 38	Poor QLW
32 7 9 50 28	9

8 41 9 7 17	1
1 2 5 3 139	3
3 1 5 5 399	
3 3 4 5 91	
4 1 4 1 33	
1 3 5 4 185	
3 3 4 3 23	
3 1 3 3 108	

【样例输入输出 2】

susu.in	susu.out
1 10 7	6
14 15 9 26 53 58 9 7 9 32	7
1 2 1 9 170	3
1 2 1 9 171	10
1 5 1 7 115	Poor QLW
1 1 1 10 228	1
1 4 1 4 45704571	2
1 1 1 1 1	
1 7 1 8 16	

【数据规模和约定】

对于 10%的数据,满足 $R, C \leq 10$;

对于 20%的数据,满足 R, C≤40;

对于 50%的数据,满足 $R, C \leq 200, M \leq 200,000;$

另有 50%的数据,满足 R=1, $C \le 500,000$, $M \le 20,000$;

对于 100%的数据,满足 1 \leq $P_{i,j}\leq$ 1,000,1 \leq $H_i\leq$ 2,000,000,000。

星际竞速

【问题描述】

10年一度的银河系赛车大赛又要开始了。作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一。

赛车大赛的赛场由 N 颗行星和 M 条 $\overline{\mathbf{X}}$ **向**星际航路构成,其中每颗行星都有一个不同的引力值。大赛要求车手们从一颗与这 N 颗行星之间没有任何航路的天体出发,访问这 N 颗行星每颗**恰好**一次,首先完成这一目标的人获得胜利。

由于赛制非常开放,很多人驾驶着千奇百怪的自制赛车来参赛。这次悠悠驾驶的赛车名为超能电驴,这是一部凝聚了全银河最尖端科技结晶的梦幻赛车。作为最高科技的产物,超能电驴有两种移动模式:高速航行模式和能力爆发模式。在高速航行模式下,超能电驴会展开反物质引擎,以数倍于光速的速度沿星际航路高速航行。在能力爆发模式下,超能电驴脱离时空的束缚,使用超能力进行空间跳跃——在经过一段时间的定位之后,它能瞬间移动到任意一个行星。

天不遂人愿,在比赛的前一天,超能电驴在一场离子风暴中不幸受损,机能 出现了一些障碍:在使用高速航行模式的时候,只能由每个星球飞往引力比它大 的星球,否则赛车就会发生爆炸。

尽管心爱的赛车出了问题,但是悠悠仍然坚信自己可以取得胜利。他找到了 全银河最聪明的贤者——你,请你为他安排一条比赛的方案,使得他能够用最少 的时间完成比赛。

【输入格式】

输入文件 starrace.in 的第一行是两个正整数 N, M。

第二行N个数 $A_{I}\sim A_{N}$,其中 A_{i} 表示使用能力爆发模式到达行星i所需的定位时间。

接下来M行,每行3个正整数 u_i , v_i , w_i ,表示在编号为 u_i 和 v_i 的行星之间存在一条需要航行 w_i 时间的星际航路。

输入数据已经按引力值排序,也就是编号小的行星引力值一定小,且不会有两颗行星引力值相同。

【输出格式】

输出文件 starrace.out 仅包含一个正整数,表示完成比赛所需的最少时间。

【样例输入输出1】

starrace.in	starrace.out
3 3	12
1 100 100	
2 1 10	
1 3 1	
2 3 1	

说明: 先使用能力爆发模式到行星 1, 花费时间 1。

然后切换到高速航行模式, 航行到行星 2, 花费时间 10。

之后继续航行到行星3完成比赛,花费时间1。

虽然看起来从行星1到行星3再到行星2更优,但我们却不能那样做,因为那会导致超能电驴爆炸。

【样例输入输出 2】

starrace.in	starrace.out
3 3	6
1 2 3	
1 2 100	
1 3 100	
2 3 100	

说明:这个例子中,我们始终使用能力爆发模式完成比赛。

【样例输入输出3】

starrace.in	starrace.out
4 5	230
100 1000 10 100	
1 2 100	
2 3 100	
4 3 100	
1 3 20	
2 4 20	

【数据规模和约定】

对于 30%的数据 $N \le 20$, $M \le 50$;

对于 70%的数据 *N*≤200, *M*≤4000;

对于 100%的数据 $N \leq 800$, $M \leq 15000$ 。输入数据中的任何数都不会超过 10^6 。

输入数据保证任意两颗行星之间至多存在一条航道,且不会存在某颗行星到自己的航道。