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Bali Sculptures

Time limit: 1 s
Memory limit: 64 MB

Subtask 1

Constraints: 1 ≤ N ≤ 20; 1 ≤ A ≤ B ≤ N ; 0 ≤ Yi ≤ 1, 000, 000, 000

Due to the small N of this subtask, it is possible to do a brutal complete search. We can try whether to
insert a ”separator” between each consecutive numbers. Among all those possible ”separator” positions,
we only consider those with more than or equal to A and less than or equal to B groups, and find the
minimum OR-SUM. The complexity for this solution is O(N2N ).

The solutions for the next subtasks require an understanding of Dynamic Programming.

For simplicity, let Y = max{Yi}.

Subtask 2

Constraints: 1 ≤ N ≤ 50; 1 ≤ A ≤ B ≤ min(20, N); 0 ≤ Yi ≤ 10

We would like to create a dynamic programming table with three parameter, curpos, curOR, and
curpartition.

dp[curpos][curOR][curpartition] will be true if and only if there exists a partition of the first curpos
elements with curpartition groups and the OR-sum is curOR. It can be computed by this recurrence:

dp[curpos][curOR][curpartition] =

N∨
i=curpos

dp[i + 1][curOR|sum[curpos, i]][curpartition + 1]

where sum[x, y] is the sum of the ages of sculpture x to y inclusive.

After computing the dp table, we are finding the minimum number X such that there exists P , A ≤
P ≤ B where dp[N ][X][P ] is true. We can loop for all possible values for X. curOR can be as worse as
O(Y N). Therefore, the complexity for this solution is O(NYNNN + NYN) = O(N4Yi)

Subtask 3

Constraints: 1 ≤ N ≤ 100; 1 = A ≤ B ≤ N ; 0 ≤ Yi ≤ 20

A = 1 means we can try to use as few groups as possible for any fixed curOR and curpos. We make a
minor modification to our solution from subtask 2. We remove the third parameter, left with only curpos
and curOR. For this subtask, dp[curpos][curOR] will return the fewest number of groups to make the
partition of the first curpos elements with the OR-sum is curOR. It can be computed by

dp[curpos][curOR] = 1 +
N

min
i=curpos

dp[i + 1][curOR|sum[curpos, i]]

After computing the dp table, we are finding the minimum number X such that dp[N ][X] ≤ B. The
complexity for this solution is O(NYNN + NY ) = O(N3Y )

Subtask 4

Constraints: 1 ≤ N ≤ 100; 1 ≤ A ≤ B ≤ N ; 0 ≤ Yi ≤ 1, 000, 000, 000

We are looking for minimum OR-SUM. We will construct the answer bit-by-bit, from the most significant
bit.
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It is always optimal if greedily fix the most significant bit of the OR-SUM to be zero, regardless of the
other bits. If it is possible, then the most significant bit should be zero; if it is not, it will be one. Then,
we consider the next significant bit, and do the same, keeping the current ”bit prefix” not changed.

In other words, we iterate k (current bit position) from log(Y N) to 0. For each k, we try whether it
is possible to set the k-th bit of the OR-SUM to be zero (ignoring the rest of least significant bits).
The check can use the dynamic programming method explained in subtask 2, but we drop the curOR
parameter. Each group sum now must not change the value of the current bit prefix. The complexity
for this solution is O(log(Y N)NNN) = O(N3 log(Y N))

Subtask 5

Constraints: 1 ≤ N ≤ 2, 000; 1 = A ≤ B ≤ N ; 0 ≤ Yi ≤ 1, 000, 000, 000

We can solve this subtask by combining the idea from subtask 4 and subtask 3. From subtask 3, we
can drop the curpartition parameter by computing the minimum number of partition in the DP table
instead. From subtask 4, we can drop the curOR parameter. By combining both ideas, we can have a
DP table where the parameter is only curpos. The complexity for this solution is O(log(Y N)NN) =
O(N2 log(Y N)).
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Jakarta Skyscrapers

Time limit: 1 s
Memory limit: 256 MB

Subtask 1

Due to the small constraint of this subtask, it is possible to do a breadth-first search, with the current
positions of the doges as the state. From a state, there can be at most M3 transitions, since each doge
can either move left, right, or stay. The number of states is MN+1, since each doge can either have
the news (N possible positions) or it does not have the news (it must be in its starting building). The
complexity of this solution is O(MN+4).

Subtask 2

Note that for doge 1 to find the news, there must be a sequence of doges x1, x2, . . . , xk such that doge
xi got the news from doge xi−1, x1 = 0 as the first doge to get the news, and xk = 1. By using this
observation, we can reduce the state to only keep track of one doge.

Now, we can optimize the BFS to only keep track of the position of the current doge, and the power
of the current doge. The state becomes (position, power), and the number of vertices is at most NM .
From each vertex, we can have two edges:

• Move: Connect (position, power) to (position + power, power) and (position− power, power).

• Move and pass the news to another doge: Connect (position, power) to (position+power, new power)
and (position− power, new power)

From each vertex, there can be at most two edges of the first type and M edges of the second type. The
total number of edges is O(N2M). Therefore, the complexity of this solution is O(NM2).

Subtask 3

We can optimize this further by transforming the problem to a weighted graph. If we consider a series
of jump from one doge to another as one single edge, we can reduce the state to just (doge). In other
words, connect doge1 to doge2 with an edge of weight w, if doge2 can be reached by doge1 in w jumps.
In the worst-case scenario, the graph is complete with O(M2) edges. By running Dijkstra’s algorithm
on this graph, we get a O(M2 logM) solution.

Subtask 4

The problem with the solution of Subtask 2 is that if there are X doges with different powers in building
Y , every jump that can reach Y will need to connect with at least X vertices. To reduce this number, we
introduce a dummy entry vertex for each building. Every jump that can reach this vertex will connect
to this dummy vertex with cost 1, and this dummy vertex will connect to every doges in the building
with cost 0. In other words, if we write this new dummy vertex as (position),

• Connect (position, power) to (position+power, power) and (position−power, power) with an edge
of weight 1.

• Connect (position, power) to (position+ power) and (position− power) with an edge of weight 1.

• Connect (position) to (position, power) for each doge with power power in position with an edge
of weight 0.

Now, the number of vertices is still the same (NM), but the number of edges is reduced to N edges from
(position) vertices, and 2NM edges from (position, power) vertices. The complexitiy is O(NM).
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Subtask 5

We still need to cut the number of vertices for this subtask. To do this, we combine the idea from subtask
3 and subtask 4:

Create (position, power) vertices only for power ≤
√
N . From a (position) vertex, we connect to

(position, power) vertex for doges with powers that are less than or equal to
√
N . If the power of

the doge is more than
√
N , loop through the possible positions that this doge can jump to, either di-

rectly or indirectly, and connect to the entry vertex of those buildings. Now, the number of vertices is
at most O(M

√
N).

The number of edges can be analyzed as follows:

• There can only be two edges from a (position, power) vertex connecting it to another (position,
power) vertex. The total number of these edges is at most 2N

√
N .

• There can be one edge from each (position, power) vertex connecting it to a (position) vertex. The
total number of these edges is at most N

√
N .

• The number of edges from a (position) vertex to a (position, power) vertex is at most
√
N for each

position, since there are only
√
N different values of power it can connect to. The total number of

these edges is at most N
√
N .

• The number of edges from a (position) vertex to another (position) vertex is bounded by the
number of jumps for each doge. Each doge with power greater than

√
N can only jump at most√

N times. The total number of these edges is at most M
√
N .

Therefore, the number of edges is O((M + N)
√
N).

Running Dijkstra’s algorithm in this graph gives a O((M + N)
√
N log(M + N)) solution.
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Palembang Bridges

Time limit: 2 s
Memory limit: 256 MB

Subtask 1

Ignore the paths which don’t cross the river (i.e., compute them separately).

Also, ignore the length of the bridge (i.e., compute it separately).

It can be proved that the solution is optimal when the bridge is built at one of the positions Sis or Tis.
Therefore, we can choose the position by brute-force. The complexity will be O(N2).

Subtask 2

If we build a bridge at position X, then Di (driving distance of citizen i) will be |X − S1| + |X − T1|.
The total sum is S = |X − S1|+ |X − T1|+ · · ·+ |X − SN |+ |X − TN |.

Sort {S1, T1, . . . , SN , TN} in non-decreasing order, and let the sorted sequence be {x1, x2, . . . , x2N}.
Then, S = |X − x1|+ |X − x2|+ · · ·+ |X − x2N |.

It can be proved that S is minimized when xN ≤ X ≤ XN+1. Then, S will be x2N + x2N−1 + · · · +
xN+1 − xN − · · · − x2 − x1.

The complexity of this solution is O(N logN).

Subtask 3

Similar to Subtask 1, it can be proved that the solution is optimal when the bridge is built at two of
the positions Sis or Tis. Therefore, we can choose the positions by brute-force. The complexity will be
O(N3).

Subtask 4

Suppose we build two bridges at positions L and R (wlog L < R).

For a particular citizen i, let Ps = min(Si, Ti)andPe = min(Si, Ti). Note that we only consider citizen
who has to cross the river to go from home to the office. (Ps, Pe) now can be considered an interval.

For a given interval (Ps, Pe) (again wlog Ps < Pe), how do we determine which bridge to use? We can
only bridge L iff

|Ps − L|+ |Pe − L| < |Ps −R|+ |Pe −R| (1)

(If they are equal, we can use either bridge).

Using Equation 1, we will now prove the following

Lemma 0.0.1. It is optimal to use the bridge at L if

Ps + Pe < L + R (2)

And it is optimal to use the bridge at R if

Ps + Pe > L + R (3)

Note that this does not imply the invese. That is, optimality of using bridge at L or R does not imply
the equations.
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Proof. To prove Lemma 0.0.1, we need to prove that we can derive Equation 1 from Equation 3. We do
so case by case. Denote the interval (Ps, Pe) with

|---------|

Case 1

|---------| L R

That is, we have Pe ≤ L.

In this case, Equation 1 expands to

|Ps − L|+ |Pe − L| < |Ps −R|+ |Pe −R|
2L− (Ps + Pe) < 2R− (Ps − Pe)

2L < 2R

Which is always true. So, we need to prove that in this case, Ps + Pe < L + R always holds. Since we
have Pe ≤ L:

Ps + Pe ≤ Pe + Pe (Since Ps ≤ Pe)

≤ 2L (Since Pe ≤ L)

< L + R (Since L < R)

Case 2

L R |---------|

That is, we have Ps ≥ R. We prove similar to Case 1. Equation 1 expands to

|Ps − L|+ |Pe − L| < |Ps −R|+ |Pe −R|
(Ps + Pe)− 2L < (Ps − Pe)− 2R

2L > 2R

Which is always false. So, we need to prove that in this case, Ps +Pe < L+R never hold. Since we have
Ps ≥ R:

Ps + Pe ≥ Ps + Ps (Since Ps ≤ Pe)

≥ 2R (Since Ps ≥ R)

> L + R (Since L < R)

Case 3

|---------|

L R

Thus, we have L ≤ Ps ≤ R ≤ Pe.

Equation 1 expands to
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|Ps − L|+ |Pe − L| < |Ps −R|+ |Pe −R|
(Ps + Pe)− 2L < R− Ps + Pe −R

(Ps + Pe)− 2L < Pe − Ps

2Ps < 2L

Which is always false. So, we need to prove that in this case, Ps + Pe < L + R never hold:

Ps + Pe ≥ L + Pe (Since L ≤ Ps)

≥ L + R (Since R ≤ Pe)

Case 4

|---------|

L R

Thus, we have Ps ≤ L ≤ Pe ≤ R.

Equation 1 expands to

|Ps − L|+ |Pe − L| < |Ps −R|+ |Pe −R|
L− Ps + Pe − L < 2R− Ps − Pe

2Pe < 2R

Which is always true. So, we need to prove that in this case, Ps + Pe < L + R always hold:

Ps + Pe ≤ L + Pe (Since Ps ≤ L)

≤ L + R (Since Pe ≤ R)

Case 5

|---------|

L R

Thus, we have Ps ≤ L ≤ R ≤ Pe.

Equation 1 expands to

|Ps − L|+ |Pe − L| < |Ps −R|+ |Pe −R|
L− Ps + Pe − L < R− Ps + Pe −R

0 < 0

Which is always false, and in particular, it implies that the distance of using either of the bridges is the
same. Thus, using any of the two bridges is always optimal.
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Case 6

|---------|

L R

Thus, we have L ≤ Ps ≤ Pe ≤ R.

From Equation 3:

Ps + Pe < L + R

2(Ps + Pe) < 2L + 2R

(Ps + Pe)− 2L < 2R− (Ps + Pe)

|Ps − L|+ |Pe − L| < |Ps −R|+ |Pe −R|

Which is equation 1.

Thus, there exists a way to separate the intervals into those which should go to the left bridge and those
which should go to the right bridge. Sort the intervals by Ps + Pe, and for every possible separation of
this sequence of intervals, try to find the optimal placement of two bridges.

The optimal placement of a partition can be solved using the algorithm in Subtask 2. So, the total
complexity is O(N2 logN).

Subtask 5

One way to do this in O(N log2 N): we keep track of a data structure to count the cost of placing a
bridge in each possible position (initially, all are zero). We add the intervals one by one. When we add
an interval (Ps, Pe), we are actually adding to each position x, |Ps − x| and |Pe − x|. f(x) = |A − x|,
though, is convex, so the sum over all these convex functions is a convex function. So we can ternary
search over the sum of these convex functions to find the minimum in log2(N) time.

There is another solution in O(N logN). Note that the optimal location of a bridge in each prefix is
between the medians of the positions. So, the problem reduces to finding medians of each prefix. This
incremental medians problem can be solved using using two heaps: one min-heap, and one max-heap.
When we add an interval, we add Ps and Pe in the heaps in such a way that both heaps contain equal
number of elements (possibly transferring elements between heaps). Then, the medians can be found in
O(1).
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