
Nordic Collegiate Programming Contest
NCPC 2018

October 6, 2018

Problems

A Altruistic Amphibians
B Baby Bites
C Code Cleanups
D Delivery Delays
E Explosion Exploit
F Firing the Phaser
G Game Scheduling
H House Lawn
I Intergalactic Bidding
J Jumbled String
K King’s Colors

Do not open before the contest has started.



Advice, hints, and general information

• The problems are not sorted by difficulty.

• Your solution programs must read input from standard input (e.g. System.in in Java or
cin in C++) and write output to standard output (e.g. System.out in Java or cout
in C++). For further details and examples, please refer to the documentation in the help
pages for your favorite language on Kattis.

• For information about which compiler flags and versions are used, please refer to the
documentation in the help pages for your favorite language on Kattis.

• Your submissions will be run multiple times, on several different inputs. If your submission
is incorrect, the error message you get will be the error exhibited on the first input on which
you failed. E.g., if your instance is prone to crash but also incorrect, your submission may
be judged as either “wrong answer” or “run time error”, depending on which is discovered
first. The inputs for a problem will always be tested in the same order.

• If you think some problem is ambiguous or underspecified, you may ask the judges for a
clarification request through the Kattis system. The most likely response is “No comment,
read problem statement”, indicating that the answer can be deduced by carefully reading
the problem statement or by checking the sample test cases given in the problem, or that
the answer to the question is simply irrelevant to solving the problem.

• In general we are lenient with small formatting errors in the output, in particular whitespace
errors within reason, and upper/lower case errors are often (but not always) ignored. But
not printing any spaces at all (e.g. missing the space in the string “1 2” so that it becomes
“12”) is typically not accepted.

The safest way to get accepted is to follow the output format exactly.

• For problems with floating point output, we only require that your output is correct up to
some error tolerance.

For example, if the problem requires the output to be within either absolute or relative
error of 10−4, this means that

– If the correct answer is 0.05, any answer between 0.0499 and .0501 will be accepted.

– If the correct answer is 500, any answer between 499.95 and 500.05 will be accepted.

Any reasonable format for floating point numbers is acceptable. For instance, “17.000000”,
“0.17e2”, and “17” are all acceptable ways of formatting the number 17. For the definition
of reasonable, please use your common sense.



Problem A
Altruistic Amphibians

Problem ID: altruisticamphibians
Time limit: 3 seconds

Picture from szftlgs.com, CC0

A set of frogs have accidentally fallen to the bottom of a
large pit. Their only means of escaping the pit is to jump
out of it. Each frog i is described by three parameters
(li, wi, hi) where li is its leap capacity, wi its weight, and
hi its height. The leap capacity specifies how high that
frog can jump. If a frog’s leap capacity is strictly larger
than the depth of the pit, the frog can directly escape
the pit. However, these frogs are altruistic. Rather than
selfishly saving themselves and leaving the frogs with
too limited leap capacity behind, they collectively aim to save as many of them from the pit as
possible.

The frogs realize that if a frog A climbs up on the back of frog B before it jumps, the first
frog A stands a better chance of escaping the pit: it can escape if hB + lA is strictly larger than
the depth of the pit.

Furthermore, if frog B carrying frog A on its back climbs up on the back of frog C, the
situation is even better for frog A: it can now escape the pit if hC + hB + lA is strictly larger
than the depth of the pit.

The frogs can build even higher piles of frogs this way, the only restriction is that no frog
may carry other frogs of weight in total amounting to its own weight or heavier. Once a pile has
been used to allow a frog to escape, the frogs in the pile jump back to the bottom of the pit and
they can then form a new pile (possibly consisting of a different set of frogs). The question is
simply how many frogs can escape the pit assuming they collaborate to maximize this number?

Input
The first line of input contains two integers n and d (1 ≤ n ≤ 100 000, 1 ≤ d ≤ 108), where n
is the number of frogs and d is the depth of the pit in µm. Then follow n lines each containing
three integers l, w, h (1 ≤ l, w, h ≤ 108), representing a frog with leap capacity l µm, weight w
µg, and height h µm. The sum of all frogs’ weights is at most 108 µg.

Output
Output the maximum number of frogs that can escape the pit.

Sample Input 1 Sample Output 1

3 19
15 5 3
12 4 4
20 10 5

3

NCPC 2018 Problem A: Altruistic Amphibians 1

https://szftlgs.com/frog-wallpaper.html/pic-wsw1052176?lang=sv


Sample Input 2 Sample Output 2

3 19
14 5 3
12 4 4
20 10 5

2

NCPC 2018 Problem A: Altruistic Amphibians 2



Problem B
Baby Bites

Problem ID: babybites
Time limit: 1 second

Arild just turned 1 year old, and is currently learning
how to count. His favorite thing to count is how many
mouthfuls he has in a meal: every time he gets a bite,
he will count it by saying the number out loud.

Unfortunately, talking while having a mouthful
sometimes causes Arild to mumble incomprehensibly,
making it hard to know how far he has counted. Some-
times you even suspect he loses his count! You decide to
write a program to determine whether Arild’s counting
makes sense or not.

Input
The first line of input contains an integer n (1 ≤ n ≤ 1 000), the number of bites Arild receives.
Then second line contains n space-separated words spoken by Arild, the i’th of which is either a
non-negative integer ai (0 ≤ ai ≤ 10 000) or the string “mumble”.

Output
If Arild’s counting might make sense, print the string “makes sense”. Otherwise, print the
string “something is fishy”.

Sample Input 1 Sample Output 1

5
1 2 3 mumble 5

makes sense

Sample Input 2 Sample Output 2

8
1 2 3 mumble mumble 7 mumble 8

something is fishy

Sample Input 3 Sample Output 3

3
mumble mumble mumble

makes sense

NCPC 2018 Problem B: Baby Bites 3



This page is intentionally left (almost) blank.



Problem C
Code Cleanups

Problem ID: codecleanups
Time limit: 1 second

Picture by Thom Holwerda via OSnews

The management of the software company JunkCode
has recently found, much to their surprise and disap-
pointment, that productivity has gone down since they
implemented their enhanced set of coding guidelines.
The idea was that all developers should make sure that
every code change they push to the master branch of
their software repository strictly follows the coding
guidelines. After all, one of the developers, Perikles,
has been doing this since long before these regulations
became effective so how hard could it be?

Rather than investing a lot of time figuring out why
this degradation in productivity occurred, the line man-
ager suggests that they loosen their requirement: devel-
opers can push code that weakly violates the guidelines as long as they run cleanup phases on
the code from time to time to make sure the repository is tidy.

She suggests a metric where the “dirtiness” of a developer’s code is the sum of the pushes
that violate the guidelines – so-called dirty pushes – made by that developer, each weighted by
the number of days since it was pushed. The number of days since a dirty push is a step function
that increases by one each midnight following the push. Hence, if a developer has made dirty
pushes on days 1, 2, and 5, the dirtiness on day 6 is 5 + 4 + 1 = 10. She suggests that a cleanup
phase, completely fixing all violations of the coding guidelines, must be completed before the
dirtiness reaches 20. One of the developers, Petra, senses that this rule must be obeyed not
only because it is a company policy. Breaking it will also result in awkward meetings with a
lot of concerned managers who all want to know why she cannot be more like Perikles? Still,
she wants to run the cleanup phase as seldomly as possible, and always postpones it until it is
absolutely necessary. A cleanup phase is always run at the end of the day and fixes every dirty
push done up to and including that day. Since all developers are shuffled to new projects at the
start of each year, no dirtiness should be left after midnight at the end of new year’s eve.

Input
The first line of input contains an integer n (1 ≤ n ≤ 365), the number of dirty pushes made by
Petra during a year. The second line contains n integers d1, d2, . . . , dn (1 ≤ di ≤ 365 for each
1 ≤ i ≤ n) giving the days when Petra made dirty pushes. You can assume that di < dj for
i < j.

Output
Output the total number of cleanup phases needed for Petra to keep the dirtiness strictly below
20 at all times.

NCPC 2018 Problem C: Code Cleanups 5

http://www.osnews.com/story/19266/WTFs_m


Sample Input 1 Sample Output 1

5
1 45 65 84 346

4

Sample Input 2 Sample Output 2

3
310 330 350

3

NCPC 2018 Problem C: Code Cleanups 6



Problem D
Delivery Delays

Problem ID: deliverydelays
Time limit: 5 seconds

Picture by Clker-Free-Vector-Images via Pixabay, CC0

Hannah recently discovered her passion for baking pizzas, and
decided to open a pizzeria in downtown Stockholm. She did this
with the help of her sister, Holly, who was tasked with deliver-
ing the pizzas. Their pizzeria is an instant hit with the locals,
but, sadly, the pizzeria keeps losing money. Hannah blames the
guarantee they put forth when they advertised the pizzeria:

Do you have a craving for a delicious pizza? Do you
want one right now? Order at Hannah’s pizzeria and
we will deliver the pizza to your door. If more than
20 minutes elapse from the time you place your order
until you receive your Hannah’s pizza, the pizza will
be free of charge!

Even though Holly’s delivery car can hold an arbitrary number of pizzas, she has not been able
to keep up with the large number of orders placed, meaning they have had to give away a number
of pizzas due to late deliveries.

Trying to figure out the best way to fix the situation, Hannah has now asked you to help
her do some analysis of yesterday’s orders. In particular, if Holly would have known the set of
orders beforehand and used an optimal delivery strategy, what is the longest a customer would
have had to wait from the time they placed their order until they received their pizza?

Hannah provides you with a map of the roads and road intersections of Stockholm. She also
gives you the list of yesterday’s orders: order i was placed at time si from road intersection ui,
and the pizza for this order was out of the oven and ready to be picked up for delivery at time
ti. Hannah is very strict about following the “first come, first served” principle: if order i was
placed before order j (i.e. si < sj), then the pizza for order i will be out of the oven before the
pizza for order j (i.e. ti < tj), and the pizza for order i must be delivered before the pizza for
order j.

Input
The first line of input contains two integers n and m (2 ≤ n ≤ 1 000, 1 ≤ m ≤ 5 000), where n
is the number of road intersections in Stockholm and m is the number of roads. Then follow m
lines, the i’th of which contains three integers ui, vi and di denoting that there is a bidirectional
road between intersections ui and vi (1 ≤ ui, vi ≤ n, ui 6= vi), and it takes Holly’s delivery car
di time units to cross this road in either direction (0 ≤ di ≤ 108). There is at most one road
between any pair of intersections.

Then follows a line containing an integer k, the number of orders (1 ≤ k ≤ 1 000). Then
follow k lines, the i’th of which contains three integers si, ui, ti denoting that an order was made
at time si from road intersection ui (2 ≤ ui ≤ n), and that the order is ready for delivery at time
ti (0 ≤ si ≤ ti ≤ 108). The orders are given in increasing order of when they were placed, i.e.
si < sj and ti < tj for all 1 ≤ i < j ≤ k.

Hannah’s pizzeria is located at road intersection 1, and Holly and her delivery car are
stationed at the pizzeria at time 0. It is possible to reach any road intersection from the pizzeria.

NCPC 2018 Problem D: Delivery Delays 7

https://pixabay.com/en/pizza-slice-food-pizzas-junk-food-30579/


Output
Output a single integer denoting the longest time a customer has to wait from the time they place
their order until the order is delivered, assuming that Holly uses a delivery schedule minimizing
this value.

Sample Input 1 Sample Output 1

4 4
1 2 2
2 3 4
3 4 1
4 1 2
3
1 4 2
3 3 3
4 3 6

6

Sample Input 2 Sample Output 2

3 2
1 2 1
3 2 2
4
0 3 1
1 3 3
2 2 4
4 3 6

8

NCPC 2018 Problem D: Delivery Delays 8



Problem E
Explosion Exploit

Problem ID: explosion
Time limit: 3 seconds

Picture by OpenClipart-Vectors on Pixabay, CC0

In a two player card game, you have n minions on the board
and the opponent has m minions. Each minion has a health
between 1 and 6.

You are contemplating your next move. You want to
play an “Explosion” spell which deals d units of damage
randomly distributed across all minions. The damage is
dealt one unit at a time to some remaining minion on the
board. Each living minion (including your own) has the same
chance of receiving each unit of damage. When a minion
receives a unit of damage, its health is decreased by one. As
soon as the health of a minion reaches zero, it is immediately
removed from the board, before the next damage is dealt. If
there are no minions left on the board, any excess damage
caused by the spell is ignored.

Given the current health of all minions, what is the probability that the Explosion will remove
all of the opponent’s minions? Note that it does not matter if all your own minions die in the
process as well, and the damage continues to be dealt even if all your own minions are gone.

Input
The first line of input contains the three integers n, m, and d (1 ≤ n,m ≤ 5, 1 ≤ d ≤ 100).
Then follows a line containing n integers, the current health of all your minions. Finally, the
third line contains m integers, the current health of all the opponent’s minions. All healths are
between 1 and 6 (inclusive).

Output
Output the probability that the Explosion removes all the opponent’s minions, accurate up to an
absolute error of 10−6.

Sample Input 1 Sample Output 1

1 2 2
2
1 1

0.3333333333

Sample Input 2 Sample Output 2

2 3 12
3 2
4 2 3

0.1377380946

NCPC 2018 Problem E: Explosion Exploit 9

https://pixabay.com/en/explosion-detonation-boom-bomb-417894/


This page is intentionally left (almost) blank.



Problem F
Firing the Phaser

Problem ID: firingphaser
Time limit: 3 seconds

Illustration of a solution to Sample Input 1

As captain of your space ship you have never encountered a more fierce
enemy than the one you have snuck upon now. You immediately bring
out the big phaser cannon hoping to take out the flagship before they
discover you. There is no room for mistakes and the shot will have to
be perfect if you are to stand any chance at all against the flagship of
the enemy.

You start charging the phaser beam and retrieve the room layout
of the flagship from the archives. You are situated directly above the
enemy, from where the layout of the flagship can be modeled by a
two-dimensional map of the rooms of the flagship. In this map, each
room is a rectangle with sides parallel to the x and y axes (rectilinear),
and no two rooms intersect (not even in a single point).

The phaser beam is configured by giving a point (x, y) and an angle ϑ. The phaser beam
will start at (x, y) and travel a distance ` in the direction specified by ϑ, causing severe damage
to every room touched by the phaser beam. Due to this, you aim at hitting as many rooms as
possible.

The phaser beam is almost fully charged and the only missing piece is an optimal configura-
tion of the weapon. Unfortunately, it turns out to be harder than you expected. However, there
are still ten seconds before the charging is completed and hence you decide to make a computer
program to solve the problem.

Input
The first line of input consists of two integers r and ` (1 ≤ r ≤ 15, 1 ≤ ` ≤ 1 000) where r is
the number of rooms in the flagship and ` is the length of a shot of the phaser.

Then follow r lines, each of which contains four integers x1, y1, x2, y2 (0 ≤ x1 < x2 ≤ 1 000,
0 ≤ y1 < y2 ≤ 1 000), indicating that there is a room in the flagship with lower left corner
(x1, y1) and upper right corner (x2, y2).

Output
Output one line with the maximum number of rooms that can be hit by one phaser beam. Recall
that if the beam touches a room it is counted as a hit.

You may assume that the answer is numerically stable in the following sense: if all rooms
are expanded by a distance of 10−6 in all four directions, the answer does not change.

NCPC 2018 Problem F: Firing the Phaser 11



Sample Input 1 Sample Output 1

5 8
2 1 4 5
5 1 12 4
5 5 9 10
1 6 4 10
2 11 7 14

4

Sample Input 2 Sample Output 2

3 6
2 2 3 3
5 3 6 4
6 6 7 7

3

NCPC 2018 Problem F: Firing the Phaser 12



Problem G
Game Scheduling

Problem ID: gamescheduling
Time limit: 3 seconds

Picture by Pat Paker via Wikimedia Commons, CC BY

In a tournament with m teams, each team consisting of n
players, construct a playing schedule so that each player is
paired up against all players in all teams except their own.
That is, each player should play (m− 1) · n games.

The playing schedule should be divided into rounds. A
player can play at most one game per round. If a player
does not play a game in a round, that player is said to have
a bye in that round.

Your task is to write a program that constructs a playing
schedule so that no player has a bye in more than 1 round.
In other words, the total number of rounds in the playing
schedule should be no more than (m− 1) · n+ 1.

The order of the rounds and games, and who is home and away in a game, does not matter.

Input
The input consists of a single line with two integers n and m (1 ≤ n ≤ 25, 2 ≤ m ≤ 25,
n ·m ≤ 100), the number of players in a team and the total number of teams, respectively.

Output
Output one line per round in the playing schedule. Each line should contain a space separated
list of games. A game is in the format “<player>-<player>”. The players in the first team
are denoted as A1,A2, ...,An; the second team B1,B2, . . .Bn and so on.

Sample Input 1 Sample Output 1

3 2 A1-B2 B1-A2 A3-B3
A2-B3 B2-A3 A1-B1
A3-B1 B3-A1 A2-B2

Sample Input 2 Sample Output 2

2 3 A1-B1 A2-C2 B2-C1
A1-C1 A2-B1 B2-C2
A1-B2 A2-C1 B1-C2
A1-C2 A2-B2 B1-C1

Sample Input 3 Sample Output 3

1 5 B1-E1 C1-D1
C1-A1 D1-E1
D1-B1 E1-A1
E1-C1 A1-B1
A1-D1 B1-C1

NCPC 2018 Problem G: Game Scheduling 13

https://commons.wikimedia.org/wiki/File:British_Chess_Championship_2009.jpg


This page is intentionally left (almost) blank.



Problem H
House Lawn

Problem ID: houselawn
Time limit: 1 second

Picture by David Hawgood, CC BY-SA

You have just bought a new house, and it has a huge, beau-
tiful lawn. A lawn that needs cutting. Several times. Every
week. The whole summer.

After pushing the lawnmower around the lawn during the
hottest Saturday afternoon in history, you decided that there
must be a better way. And then you saw the ads for the new
robotic lawnmovers. But which one should you buy? They
all have different cutting speeds, cutting times and recharge
times, not to mention different prices!

According to the advertisement, a robotic lawnmover
will spend all its time either cutting the lawn or recharging its battery. Starting from a full battery,
it will cut the lawn at a given rate of c square meters per minute for a cutting time of t minutes,
after which it has run out of battery. Once out of battery, it will immediately start recharging.
After recharging for r minutes the battery is full again and it immediately starts cutting.

You decide that in order for your lawn to look sufficiently prim and proper, the lawnmower
that you buy must be powerful enough to cut your whole lawn at least once a week on average.
Formally, if we start the mower fully charged at the beginning of the week and run it for exactly
T weeks, it needs to cut the whole lawn at least T times, for all positive integers T . But apart
from this, you have no specific requirements, so among the ones that satisfy this requirement,
you will simply go for the cheapest option. For the purposes of cutting your lawn, you may
make the simplifying assumption that a week is always exactly 10 080 minutes long.

Input
The first line of input contains two integers ` and m (1 ≤ ` ≤ 106, 1 ≤ m ≤ 100), the size of
your lawn in square meters, and the number of lawnmowers to consider, respectively.

Then follow m lines, each containing a string n and 4 integers p, c, t, and r, separated by
commas, describing a lawnmower as follows:

• n is the name of the lawnmower, a string of at most 60 printable characters (ASCII 32 to
126) excluding ‘,’, neither starting nor ending with a space,

• 1 ≤ p ≤ 100 000 is the price of the lawnmover,

• 1 ≤ c ≤ 100 is the cutting rate in square meters per minute,

• 1 ≤ t ≤ 10 080 is the cutting time in minutes, and

• 1 ≤ r ≤ 10 080 is the recharge time in minutes.

Output
Output the name of the cheapest lawnmower capable of cutting your whole yard at least once a
week on average. If several lawnmovers share the same lowest price, output all of their names,
in the same order they were given in the input. If there is no such mower, output “no such
mower”.

NCPC 2018 Problem H: House Lawn 15

https://www.geograph.org.uk/photo/5790848


Sample Input 1 Sample Output 1

7000 4
Grass Slayer 2000,9999,10,120,120
Slow-Mowe,999,1,120,240
Eco-cut X2,5499,2,25,35
Mowepower,5499,3,25,35

Eco-cut X2
Mowepower

Sample Input 2 Sample Output 2

100000 4
Grass Slayer 2000,9999,10,120,120
Slow-Mowe,999,1,120,240
Eco-cut X2,5499,2,25,35
Mowepower,5499,3,25,35

no such mower

NCPC 2018 Problem H: House Lawn 16



Problem I
Intergalactic Bidding

Problem ID: intergalacticbidding
Time limit: 2 seconds

Picture by Activedia via Pixabay, CC0

Today the Intergalactic Council of Pebble Coins (ICPC) conducted
an intergalactic auction of the Neutronium Chaos Pebble Coin
(NCPC). This coin, which was forged in the Ancient Coin Machine
(ACM), is rumored to be the key to ruling the universe.

Due to the extremely competitive nature of the auction, as well
as the odd mechanics of the intergalactic currency used (far too
advanced for mere mortals to understand), the auction was conducted
with the following rules:

1. only one participant was allowed to make a bid at a time,

2. each participant was only allowed to make one bid, and

3. a participant making a bid had to bid at least twice the amount of the highest bid at the
time.

The first participant making a bid was allowed to make a bid of any positive amount.
After the auction there were a lot of sore losers – understandably, having just lost their chance

at world domination. To make the losers feel a little better and prevent possible rioting, the ICPC
has decided to hold a lottery for the participants. The winners of the lottery are determined as
follows. The ICPC picks a random number s. A group of participants is called winning if the
sum of their bets from the auction is equal to s. A participant wins the lottery and receives a
prize – a shiny Pebble Coin – if they belong to any winning group of participants.

Given the names of the participants, the bets that they made, and the random number s
chosen by the ICPC, help them determine which participants won the lottery.

Input
The first line of input contains two integers n and s, where 1 ≤ n ≤ 1 000 is the number of
participants, and 1 ≤ s < 101 000 is the random number chosen by the ICPC.

Then follow n lines describing the participants. Each line contains a string t and an integer
b, where t is the name of a participant, and 1 ≤ b < 101 000 is the amount of his bet. The name
of each participant is unique and consists of between 1 and 20 letters from the English alphabet.

Output
Output an integer k denoting the number of participants that won the lottery. Then output k lines
containing the names of the participants that won the lottery, one per line, in any order.

NCPC 2018 Problem I: Intergalactic Bidding 17

https://pixabay.com/en/law-justice-court-judge-legal-1063249/


Sample Input 1 Sample Output 1

5 63
Vader 3
Voldemort 7
BorgQueen 20
Terminator 40
Megatron 101

3
BorgQueen
Terminator
Vader

Sample Input 2 Sample Output 2

4 1112
Blorg 10
Glorg 1000
Klorg 1
Zlorg 100

0

NCPC 2018 Problem I: Intergalactic Bidding 18



Problem J
Jumbled String

Problem ID: jumbledstring
Time limit: 1 second

Picture by snd63 via pixabay, CC0

Recall that a subsequence of a string is any string
obtained by removing some subset of characters from
the string, for instance “string”, “sing”, “i” and “sg”
are all subsequences of “string”. If the same subse-
quence can be obtained in exactly t different ways, by
removing different subsets of characters, we say that
the subsequence occurs t times.

Jingfei wants to create a nonempty bit string that
has the following properties:

1. the subsequence 00 occurs a times,

2. the subsequence 01 occurs b times,

3. the subsequence 10 occurs c times, and

4. the subsequence 11 occurs d times.

However, Jingfei does not know how to create such a string – or whether it is even possible.
Could you help her?

Input
The input consists of a single line with four integers a, b, c, and d (0 ≤ a, b, c, d ≤ 109).

Output
Output a bit string that satisfies the given requirements. If there are several solutions, output any
one of them. If there are no solutions, output “impossible”.

Sample Input 1 Sample Output 1

3 4 2 1 01001

Sample Input 2 Sample Output 2

5 0 0 5 impossible

NCPC 2018 Problem J: Jumbled String 19

https://pixabay.com/en/thread-tangle-knitting-needlework-1484387/


This page is intentionally left (almost) blank.



Problem K
King’s Colors

Problem ID: kingscolors
Time limit: 1 second

Picture by Geddo via Pixabay, CC0

Far, far away, there is the mystical Kingdom of Trees
(more formally, “Royal Commonwealth of Connected
Undirected Simple Acyclic Graphs”). The King there
is very sad because his kingdom is not accepted as
a sovereign state in the United Nations. In order to
become a member, he needs to make a flag the UN can
put on their website.

The flag will of course consist of the King’s favorite
tree, which contains n nodes. The King would be happy
to just have the tree colored in black and white, but for
the sake of his wife the Queen, he decided that the tree
will contain all the favorite colors of their k children (they all have distinct favorite colors).
Clearly, no two neighboring nodes can have the same color, but otherwise any coloring of the
tree using exactly the k colors would make a feasible flag candidate.

How many different flags are possible?

Input
The first line contains two integers n and k (2 ≤ k ≤ n ≤ 2 500), where n is the number of
nodes in the King’s favorite tree and k is the number of children. Then follow n − 1 lines
describing the edges in the tree; the i’th of these lines contains a non-negative integer pi < i,
meaning that node pi is the parent of i.

The nodes are numbered from 0 to n − 1 and the tree is rooted at node 0. Note that the
embedding of the tree on the flag is already fixed, the only thing that remains is to assign colors.

Output
Output the number of different possible color assignments. The number can be quite big, so the
King has requested to know the answer modulo 1 000 000 007.

Sample Input 1 Sample Output 1

4 3
0
1
1

18

NCPC 2018 Problem K: King’s Colors 21

https://pixabay.com/en/tree-colored-design-1326962/


Sample Input 2 Sample Output 2

6 4
0
1
1
3
4

600

NCPC 2018 Problem K: King’s Colors 22


