KTH Challenge 2021 Solutions

2021-05-08

Given nodes labled 1 to n. Create a connected graph with m edges such that the sums of edge endpoints are distinct.

Given nodes labled 1 to n. Create a connected graph with m edges such that the sums of edge endpoints are distinct.

Here is one possible construction:

Given nodes labled 1 to n. Create a connected graph with m edges such that the sums of edge endpoints are distinct.

Here is one possible construction:

Connect node 1 with all other nodes (connecting the graph).

Given nodes labled 1 to n. Create a connected graph with m edges such that the sums of edge endpoints are distinct.

Here is one possible construction:

- Connect node 1 with all other nodes (connecting the graph).
- Connect node n with all other nodes.

Given nodes labled 1 to n. Create a connected graph with m edges such that the sums of edge endpoints are distinct.

Here is one possible construction:

- Connect node 1 with all other nodes (connecting the graph).
- Connect node n with all other nodes.

Note This uses all possible sums. So it is not possible to add more edges.

Given the model of a dexterity saving throw in B&B, determine the probability of success. (not related to D&D)

Given the model of a dexterity saving throw in B&B, determine the probability of success. (not related to D&D)

Key insight Few dice, few sides.

Given the model of a dexterity saving throw in B&B, determine the probability of success. (not related to D&D)

Key insight Few dice, few sides.

Only at most $20^2 \cdot 10^5 = 4 \cdot 10^7$ possible outcomes.

Given the model of a dexterity saving throw in B&B, determine the probability of success. (not related to D&D)

Key insight Few dice, few sides.

Only at most $20^2 \cdot 10^5 = 4 \cdot 10^7$ possible outcomes.

Solution Loop over all possible outcomes.

Given the model of a dexterity saving throw in B&B, determine the probability of success. (not related to D&D)

Key insight Few dice, few sides.

Only at most $20^2 \cdot 10^5 = 4 \cdot 10^7$ possible outcomes.

Solution Loop over all possible outcomes.

Implementation Number of dice can vary, so recursion simplifies

Given a song (list of tones) and a vocal range. Minimize the number accidentals by transposing (shifting). Also count how many such transpositions that exist.

 $D4 \ D4 \ E4 \ D4 \ G4 \ F\sharp 4 \ \nearrow_5 \ G4 \ G4 \ A4 \ G4 \ C5 \ B4$

Given a song (list of tones) and a vocal range. Minimize the number accidentals by transposing (shifting). Also count how many such transpositions that exist.

$$D4 \ D4 \ E4 \ D4 \ G4 \ F\sharp 4 \ \nearrow_5 \ G4 \ G4 \ A4 \ G4 \ C5 \ B4$$

Key insight There are fundamentally 12 different kinds of transpositions.

Given a song (list of tones) and a vocal range. Minimize the number accidentals by transposing (shifting). Also count how many such transpositions that exist.

$$D4 \ D4 \ E4 \ D4 \ G4 \ F\sharp 4 \ \nearrow_5 \ G4 \ G4 \ A4 \ G4 \ C5 \ B4$$

Key insight There are fundamentally 12 different kinds of transpositions.

Solution Check which of the 12 transpositions minimizes #accidentals in O(n).

Given a song (list of tones) and a vocal range. Minimize the number accidentals by transposing (shifting). Also count how many such transpositions that exist.

 $D4 \ D4 \ E4 \ D4 \ G4 \ F\sharp 4 \ \nearrow_5 \ G4 \ G4 \ A4 \ G4 \ C5 \ B4$

Key insight There are fundamentally 12 different kinds of transpositions.

Solution Check which of the 12 transpositions minimizes #accidentals in O(n).

Implementation Start by transposing the song down to the lowest allowed tone.

Given a song (list of tones) and a vocal range. Minimize the number accidentals by transposing (shifting). Also count how many such transpositions that exist.

$$D4 \ D4 \ E4 \ D4 \ G4 \ F \sharp 4 \ \nearrow_5 \ G4 \ G4 \ A4 \ G4 \ C5 \ B4$$

Key insight There are fundamentally 12 different kinds of transpositions.

Solution Check which of the 12 transpositions minimizes #accidentals in O(n).

Implementation Start by transposing the song down to the lowest allowed tone.

Use the highest tone in the song to count number of allowed octave transpositions.

Given n participants and m available problems. You are given the task of designing a contest of duration t, split into k age-divisions, in order to minimize the total number of prize winners (participants solving the most problems in each division).

Participant i has a slowness-factor s_i and problem j has difficulty rating d_j . The time it takes participant i to solve problem j is $s_i \cdot d_j$.

Given n participants and m available problems. You are given the task of designing a contest of duration t, split into k age-divisions, in order to minimize the total number of prize winners (participants solving the most problems in each division).

Participant i has a slowness-factor s_i and problem j has difficulty rating d_j . The time it takes participant i to solve problem j is $s_i \cdot d_j$.

Case k = 1 (Single division):

Given n participants and m available problems. You are given the task of designing a contest of duration t, split into k age-divisions, in order to minimize the total number of prize winners (participants solving the most problems in each division).

Participant i has a slowness-factor s_i and problem j has difficulty rating d_j . The time it takes participant i to solve problem j is $s_i \cdot d_j$.

Case k = 1 (Single division):

Insight 1 Fastest participant will win a prize

Given n participants and m available problems. You are given the task of designing a contest of duration t, split into k age-divisions, in order to minimize the total number of prize winners (participants solving the most problems in each division).

Participant i has a slowness-factor s_i and problem j has difficulty rating d_j . The time it takes participant i to solve problem j is $s_i \cdot d_j$.

Case k = 1 (Single division):

Insight 1 Fastest participant will win a prize

Insight 2 Minimize number of winners by picking a problemset minimizing the dead time for the fastest participant.

Case k = 1 (single division):

Insight 1 Fastest participant will win a prize

Insight 2 Minimize number of winners by picking a problemset minimizing the dead time for the fastest participant.

Solution

Case k = 1 (single division):

Insight 1 Fastest participant will win a prize

Insight 2 Minimize number of winners by picking a problemset minimizing the dead time for the fastest participant.

Solution

Find fastest participant. O(n)

Case k = 1 (single division):

Insight 1 Fastest participant will win a prize

Insight 2 Minimize number of winners by picking a problemset minimizing the dead time for the fastest participant.

Solution

Find fastest participant. O(n)

Solve the subset sum minimizing dead time for fastest participant. O(m t)

Case k = 1 (single division):

Insight 1 Fastest participant will win a prize

Insight 2 Minimize number of winners by picking a problemset minimizing the dead time for the fastest participant.

Solution

Find fastest participant. O(n)

Solve the subset sum minimizing dead time for fastest participant. O(m t)

Count number of participants tying fastest participant. O(n)

Case k > 1 (multiple divisions):

Case k > 1 (multiple divisions):

Key insight We can reuse solution for k = 1.

Case k > 1 (multiple divisions):

Key insight We can reuse solution for k = 1.

For example, suppose that the winner for k=1 would have been

L W W L W L L

Case k > 1 (multiple divisions):

Key insight We can reuse solution for k = 1.

For example, suppose that the winner for k=1 would have been

L W W L W L L

We can then find an optimal partition for k=4 by doing

 $[L \ W][W \ L][W \ L][L]$

Case k > 1 (multiple divisions):

Key insight We can reuse solution for k = 1.

Case k > 1 (multiple divisions):

Key insight We can reuse solution for k = 1.

Solution Output $\max(k, \text{solution}(k=1))$

Case k > 1 (multiple divisions):

Key insight We can reuse solution for k = 1.

Solution Output $\max(k, \text{solution}(k=1))$

Time complexity The solution takes O(n+mt)

Given a series of data over n days. On the i-th day

Given a series of data over n days. On the i-th day

 s_i units of solar powered electricity was generated.

Given a series of data over n days. On the i-th day

 s_i units of solar powered electricity was generated.

 w_i units of water flowed into the reservoir (can on demand be converted to energy).

Given a series of data over n days. On the i-th day

 s_i units of solar powered electricity was generated.

 w_i units of water flowed into the reservoir (can on demand be converted to energy).

Let e_i be the amount of energy produced on day i.

Given a series of data over n days. On the i-th day

 s_i units of solar powered electricity was generated.

 w_i units of water flowed into the reservoir (can on demand be converted to energy).

Let e_i be the amount of energy produced on day i.

Task Assuming you need to use up all the water.

Minimize:
$$\max_{i} (e_i) - \min_{i} (e_i)$$
.

Insight 1 It is possible to make function $\operatorname{check}(L,R)$ that in O(n) time checks if it is possible to keep $L \leq e_i \leq R$ for all i.

Insight 1 It is possible to make function $\operatorname{check}(L,R)$ that in O(n) time checks if it is possible to keep $L \leq e_i \leq R$ for all i.

This is done by keeping track of how much reservoir water you can have at the end of each day (it will be an interval).

Insight 1 It is possible to make function $\operatorname{check}(L,R)$ that in O(n) time checks if it is possible to keep $L \leq e_i \leq R$ for all i.

This is done by keeping track of how much reservoir water you can have at the end of each day (it will be an interval).

Insight 2 The function $\operatorname{check}(L,R)$ can actually be split into testing L and R separately. So essentially $\operatorname{check}(L,R) = \operatorname{check}(L,\infty) \wedge \operatorname{check}(-\infty,R)$.

Insight 1 It is possible to make function $\operatorname{check}(L,R)$ that in O(n) time checks if it is possible to keep $L \leq e_i \leq R$ for all i.

This is done by keeping track of how much reservoir water you can have at the end of each day (it will be an interval).

Insight 2 The function $\operatorname{check}(L,R)$ can actually be split into testing L and R separately. So essentially $\operatorname{check}(L,R) = \operatorname{check}(L,\infty) \wedge \operatorname{check}(-\infty,R)$.

Solution Use binary search on $\mathrm{check}(L,\infty)$ and $\mathrm{check}(-\infty,R)$ to find largest feasible L and smallest feasible R.

Insight 1 It is possible to make function $\operatorname{check}(L,R)$ that in O(n) time checks if it is possible to keep $L \leq e_i \leq R$ for all i.

This is done by keeping track of how much reservoir water you can have at the end of each day (it will be an interval).

Insight 2 The function $\operatorname{check}(L,R)$ can actually be split into testing L and R separately. So essentially $\operatorname{check}(L,R) = \operatorname{check}(L,\infty) \wedge \operatorname{check}(-\infty,R)$.

Solution Use binary search on $\operatorname{check}(L,\infty)$ and $\operatorname{check}(-\infty,R)$ to find largest feasible L and smallest feasible R.

Time complexity $O(n \log m)$, where $m = 10^9$.

Given a $n \times n$ matrix A, two indices i and j, and the sequence

$$A^{1}(i, j), A^{2}(i, j), \dots, A^{2n-1}(i, j)$$

Output $A^{2n}(i,j)$ modulo $10^9 + 7$.

Given a $n \times n$ matrix A, two indices i and j, and the sequence

$$A^{1}(i, j), A^{2}(i, j), \dots, A^{2n-1}(i, j)$$

Output $A^{2n}(i,j)$ modulo $10^9 + 7$.

Let
$$a_k \stackrel{\text{def}}{=\!=\!=} A^k(i,j)$$
.

Given a $n \times n$ matrix A, two indices i and j, and the sequence

$$A^{1}(i, j), A^{2}(i, j), \dots, A^{2n-1}(i, j)$$

Output $A^{2n}(i,j)$ modulo $10^9 + 7$.

Let
$$a_k \stackrel{\text{def}}{=\!=\!=} A^k(i,j)$$
.

Key insight The sequence $\{a_k\}_{k\geqslant 1}$ has a *linear recurrence* of length n.

Given a $n \times n$ matrix A, two indices i and j, and the sequence

$$A^{1}(i, j), A^{2}(i, j), \dots, A^{2n-1}(i, j)$$

Output $A^{2n}(i,j)$ modulo $10^9 + 7$.

Let
$$a_k \stackrel{\text{def}}{=\!=\!=} A^k(i,j)$$
.

Key insight The sequence $\{a_k\}_{k\geqslant 1}$ has a *linear recurrence* of length n.

Example of a linear recurrence of length 2: The Fibonacci sequence

Why?

Because of Cayley-Hamilton Theorem.

Why?

Because of Cayley-Hamilton Theorem.

The theorem essentially states that there exists integers c_0, \ldots, c_{n-1} such that

$$A^{n} = c_{n-1}A^{n-1} + c_{n-2}A^{n-2} + \ldots + c_0I_n.$$

Why?

Because of Cayley-Hamilton Theorem.

The theorem essentially states that there exists integers c_0, \ldots, c_{n-1} such that

$$A^{n} = c_{n-1} A^{n-1} + c_{n-2} A^{n-2} + \ldots + c_0 I_n.$$

Since we can multiply LHS and RHS by A, we have that for $k \geqslant n$

$$A^{k} = c_{n-1}A^{k-1} + c_{n-2}A^{k-2} + \dots + c_0A^{k-n}.$$

Because of Cayley-Hamilton Theorem.

The theorem essentially states that there exists integers c_0, \ldots, c_{n-1} such that

$$A^{n} = c_{n-1} A^{n-1} + c_{n-2} A^{n-2} + \ldots + c_0 I_n.$$

Since we can multiply LHS and RHS by A, we have that for $k\geqslant n$

$$A^{k} = c_{n-1} A^{k-1} + c_{n-2} A^{k-2} + \ldots + c_0 A^{k-n}.$$

This is a matrix equality, so in particular it will also hold that
$$A^k(i,j) = c_{n-1} A^{k-1}(i,j) + c_{n-2} A^{k-2}(i,j) + \ldots + c_0 A^{k-n}(i,j).$$

F - Forgotten Homework

Author: Björn Martinsson

Key insight The sequence $\{a_k\}_{k\geqslant 1}$ has a linear recurrence of length n.

Key insight The sequence $\{a_k\}_{k\geqslant 1}$ has a linear recurrence of length n.

So how do we figure out the linear recurrence of a_k ?

Key insight The sequence $\{a_k\}_{k\geqslant 1}$ has a linear recurrence of length n.

So how do we figure out the linear recurrence of a_k ?

We use Berlekamp-Massey's algorithm!

Key insight The sequence $\{a_k\}_{k\geqslant 1}$ has a linear recurrence of length n.

So how do we figure out the linear recurrence of a_k ?

We use Berlekamp-Massey's algorithm!

The algorithm recovers the shortest linear recurrence from a sequence. As input it needs two times the length of the shortest linear recurrence.

Key insight The sequence $\{a_k\}_{k\geqslant 1}$ has a linear recurrence of length n.

So how do we figure out the linear recurrence of a_k ?

We use Berlekamp-Massey's algorithm!

The algorithm recovers the shortest linear recurrence from a sequence. As input it needs two times the length of the shortest linear recurrence.

The linear recurrence can be n long, so Berlekamp-Massey algorithms needs the first $2\,n$ values. But we only have $2\,n-1$ values.

Problem We need 2n the first values of a_k , but we only know of 2n-1 values. We need one more value.

Problem We need 2n the first values of a_k , but we only know of 2n-1 values. We need one more value.

Solution Look back at Cayley-Hamilton Theorem

$$A^{n}(i,j) = c_{n-1}A^{n-1}(i,j) + c_{n-2}A^{n-2}(i,j) + \dots + c_0I_n(i,j).$$

Problem We need 2n the first values of a_k , but we only know of 2n-1 values. We need one more value.

Solution Look back at Cayley-Hamilton Theorem

$$A^{n}(i,j) = c_{n-1}A^{n-1}(i,j) + c_{n-2}A^{n-2}(i,j) + \dots + c_0I_n(i,j).$$

This means that it is natural to make

$$a_0 = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

Conclusion

```
1. Let a_0 \stackrel{\text{def}}{=\!=\!=} \left\{ \begin{array}{l} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{array} \right.
```

Conclusion

- 1. Let $a_0 \stackrel{\text{def}}{=\!=\!=} \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- 2. Run Berlekamp-Massey on a_0, \ldots, a_{2n-1} (takes $O(n^2)$ time)

Conclusion

- 1. Let $a_0 \stackrel{\text{def}}{=\!=\!=} \left\{ \begin{array}{l} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{array} \right.$
- 2. Run Berlekamp-Massey on a_0, \ldots, a_{2n-1} (takes $O(n^2)$ time)
- 3. Calculate a_{2n} using the linear recurrence. (takes O(n) time)

There are n numbers laid out on a circle. The same number can occur multiple times. Alf and Beta are playing a game where Alf thinks of a number x on the circle and Beta tries to guess it.

There are n numbers laid out on a circle. The same number can occur multiple times. Alf and Beta are playing a game where Alf thinks of a number x on the circle and Beta tries to guess it.

Beta picks a y and Alf answers which direction (clock-wise or counter-clockwise) is closest to x. If there are multiple possible answers then Alf can pick whichever answer he wants.

There are n numbers laid out on a circle. The same number can occur multiple times. Alf and Beta are playing a game where Alf thinks of a number x on the circle and Beta tries to guess it.

Beta picks a y and Alf answers which direction (clock-wise or counter-clockwise) is closest to x. If there are multiple possible answers then Alf can pick whichever answer he wants.

Task Output all x that it is possible for Beta to guess given that Beta can ask as many questions as he wants.

Cubic solution In $O(n^2)$ time create a matrix M where

$$M(x,y) = \begin{cases} 1 & \text{if Alf needs to answer CW on query } (x,y) \\ 0 & \text{otherwise.} \end{cases}$$

Cubic solution In $O(n^2)$ time create a matrix M where

$$M(x,y) = \begin{cases} 1 & \text{if Alf needs to answer CW on query } (x,y) \\ 0 & \text{otherwise.} \end{cases}$$

Let x_1 and x_2 be two possible values that Alf could be thinking of. Beta can distinguish between the two iff there exists a y such that

$$M(x_1, y) = M(y, x_2)$$
 or $M(y, x_1) = M(x_2, y)$.

Cubic solution In $O(n^2)$ time create a matrix M where

$$M(x,y) = \begin{cases} 1 & \text{if Alf needs to answer CW on query } (x,y) \\ 0 & \text{otherwise.} \end{cases}$$

Let x_1 and x_2 be two possible values that Alf could be thinking of. Beta can distinguish between the two iff there exists a y such that

$$M(x_1, y) = M(y, x_2)$$
 or $M(y, x_1) = M(x_2, y)$.

This allows for a $O(n^3)$ solution. Or $n^3/64$ using bitset.

Cubic solution In $O(n^2)$ time create a matrix M where

$$M(x,y) = \begin{cases} 1 & \text{if Alf needs to answer CW on query } (x,y) \\ 0 & \text{otherwise.} \end{cases}$$

Let x_1 and x_2 be two possible values that Alf could be thinking of. Beta can distinguish between the two iff there exists a y such that

$$M(x_1, y) = M(y, x_2)$$
 or $M(y, x_1) = M(x_2, y)$.

This allows for a $O(n^3)$ solution. Or $n^3/64$ using bitset.

But both are too slow. n = 15000.

Quadratic solution: For each x there are two fundamental intervals of positions for which Alf answers CW or CCW.

Note: An interval works for y iff all occurrences of y lies inside the interval.

Suppose we want to see if x_1 and x_2 can be distiguished asking queries.

This means that we need to find a y such that Alf is forced to answer differently for $query(x_1, y)$ and $query(x_2, y)$.

Suppose we want to see if x_1 and x_2 can be distiguished asking queries.

This means that we need to find a y such that Alf is forced to answer differently for $query(x_1, y)$ and $query(x_2, y)$.

Suppose we want to see if x_1 and x_2 can be distiguished asking queries.

This means that we need to find a y such that Alf is forced to answer differently for $query(x_1, y)$ and $query(x_2, y)$.

A y forces CW for x_1 and CCW for x_2 iff all occurrences of y lies inside the intersection of CW and CCW.

Given an interval. Does there exists a y occurring only inside the interval?

Given an interval. Does there exists a y occurring only inside the interval?

This is a monotone property. So we can precalculate all answers with DP in $O(n^2)$ time with O(n) memory.

Given an interval. Does there exists a y occurring only inside the interval?

This is a monotone property. So we can precalculate all answers with DP in $O(n^2)$ time with O(n) memory.

Time complexity $O(n^2)$

Given an interval. Does there exists a y occurring only inside the interval?

This is a monotone property. So we can precalculate all answers with DP in $O(n^2)$ time with O(n) memory.

Time complexity $O(n^2)$

Memory complexity O(n)

Given an interval. Does there exists a y occurring only inside the interval?

This is a monotone property. So we can precalculate all answers with DP in $O(n^2)$ time with O(n) memory.

Time complexity $O(n^2)$

Memory complexity O(n)

Extra challenge: Try solving the problem in linear time. It is possible.

Thanks for participating in KTH Challenge 2021!

Orginizers

- Per Austrin (KTH)
- Nils Gustafsson (Depict.ai)
- Björn Martinsson (KTH)
- Johan Sannemo (Kognity)