
IDI Open
Programming Contest

April 14th, 2007

The Problemset

A Help Chelsea!

B Virus

C Frogger

D Conquistador

E Party

F Save the Computer!

G Frigde of Your Dreams

H Scorched Earth

I Free Willy

2

Tips
• Tear the problem set apart and share the problems among you.

• Problems are not ordered by difficulty.

• Try solving the easy problems first. Two problems in this set are tagged with “easy”
to help you getting started.

• If you get “incorrect answer” on a problem, you can print your program and debug
it on paper while you let someone else work on a different problem on the computer.

• Contact Truls or Nils if you need help.

Rules
• Each team consists of one to three contestants.

• One computer is used per team.

• You may not cooperate with persons not on your team.

• You may print your programs on paper to debug them.

• What you may bring to the contest:

– Any written material (Books, manuals, handwritten notes, printed notes, etc).

– Pens, pencils, blank paper, stapler and other useful non-electronic office
equipment.

– NO material in electronic form (CDs, USB pen and so on).

– NO electronic devices (PDAs and so on).

• The only electronic content you may consult during the content is that specified by
the organiser (see the web-page). You may not copy source code from web pages,
etc.

• Your programs should read from standard in and write to standard out. Writing to
standard error will result in a failed submission. C programs should return 0 from
main().

• Your program may use at most 100MB of memory.

• Your programs may not:

– access the network,

– read or write files on the system,

– talk to other processes,

– fork,

– or similar stuff.

– If you try, your program will hang or crash. If it hangs, it will take a couple
of minutes before others will be able to run their programs. And please do
not crack somebody who uses their spare time trying to give you something
valuable.

• Show common sense and good sportsmanship.

3

4

Problem A

Help Chelsea! (easy)

When football clubs achieve poor results, there is only one
thing to do: Buy new players! This is the most popular
strategy among the major football clubs in Europe today,
and Rosenborg is an example of a Norwegian club which
has used this strategy with success. They have many talent
scouts travelling around the earth to find promising young
footballers.

Chelsea struggles in Premier League at the moment,
and they have decided to buy another player. But they
are sick and tired of waiting around for a talent scout to
find a descent player, and employ a way more efficient
strategy. They actually put a famous saying from Bærum
into practice: “If something is on sale, you can be sure there is a reason why.”

In a football setting, this means that the most expensive player is probably the best
one. Hence, looking for a new player only involves calling all football clubs and asking for
their most expensive player. Your task is to help Chelsea find the most expensive player
from a list.

Input specifications

The input has n ≤ 100 cases, where n is given by the first line of input. The first line
of each test case is a single positive integer, p ≤ 100, giving the number of players to
consider. Then follow p lines, where each line represents a player. The line starts with a
positive integer ci < 2 · 109, the price of player i. Then follows a single space before the
name of the player. All player prices are unique. Player names are never more than 20
characters long, and contain no spaces.

Output specifications

For each test case your program should output a single line giving the name of the most
expensive player.

5

Sample input

2

3

10 Iversen

1000000 Nannskog

2000000 Ronaldinho

2

1000000 Maradona

999999 Batistuta

Output for sample input

Ronaldinho

Maradona

6

Problem B

Virus

Some mad chemistry dude has made a new atomic
virus bomb that will kill everybody. It works like this:

The virus has N different forms. Every second,
a virus in one form will transform into one or more
viruses of the same or different forms. Furthermore,
each form will produce a certain number of tritium
atoms during the second it takes to transform. When
the total number of such atoms reaches the critical
limit L, they explode as a hydrogen bomb.

We want to know how long time it takes from a
poor guy gets infected until he blows up.

A simple example would be a virus with only one
form, which will transform into two viruses of the same form every second, and will
produce one tritium atom in one second. Let’s say that L = 15. After one second there
are two viruses and one atom. After two seconds there are four viruses and three atoms.
After three seconds there are eight viruses and seven atoms. After four seconds the bomb
goes off.

Let’s look at a little more complex example with a virus with two forms A and B, and
L = 500. Every second a virus of form A will transform into three viruses of form A and
one virus of form B, and produce one tritium atom. A virus of form B will transform into
two viruses of form B, and produce one hundred tritium atoms. If we start with one virus
of form A, then after one second we have 3 A, 1 B, and 1 atom. After two seconds we
have 9 A, 5 B, and 104 atoms. After three seconds we have 27 A, 19 B, and 613 atoms.
So the answer is three seconds.

Input specifications

The first line of the input gives the number of test cases T ≤ 100. The first line of each
test case contains 1 ≤ N ≤ 20 and 1 ≤ L ≤ 1000000000. Then follow N lines, one for
each form. The description of a form contains N +1 non-negative integers less than 1000.
The first N describe how many viruses of the different forms it transforms into. The last
describes how many tritium atoms it produces in the process.

Output specifications

Output one line for each test case. We assume that the patient is infected with one virus
of the first form. If the virus bomb will never go off, print “lucky”. Otherwise, print the
number of seconds it takes before the patient blows up.

7

Sample input

3

1 15

2 1

2 500

3 1 1

0 2 100

1 15

2 0

Output for sample input

4

3

lucky

8

Problem C

Frogger

A group of frogs is sitting on an infinite xy grid. The frogs
all have non-positive x coordinates. On the grid location
(2, 0) there’s a fly. The frogs are hungry and would like to
get there to eat the fly. There’s one catch; a frog can only
move by jumping over another frog sitting next to it, and
then the frog being jumped over explodes. So the frog John
sitting at (−1, 0) can jump to (1, 0) if Peter sits at (0, 0),
but then Peter explodes and is gone. Similarly, if Alfred sits
at (−1, 2) and Barney sits at (−1, 1), then Alfred can jump
to (−1, 0) and Barney explodes.

So getting to the fly is going to have a high cost in frog
lives, but the frogs all believe in the common good and are
willing to sacrifice everything for the sake. The question
however is whether they can make it at all. Given the
location of the fly on the non-negative x axis, how many
frogs do you need to start with? The frogs can initially be
placed anywhere on or to the left of the y-axis, but must
have distinct locations.

Input specifications

The first line of the input gives the number of test cases T ≤ 100. For each test case,
there’s one line with a single integer 0 ≤ X ≤ 31, meaning that the fly is located at (X, 0).

Output specifications

For each test case, output one line with the number of frogs you need to start with to
catch the fly, or “frogger” if it’s not possible to do it.

Sample input

4

0

1

2

3

Output for sample input

1

2

4

8

9

10

Problem D

Conquistador

Rune Johan is a nice young boy and a clever student, but he
has had little luck engaging persons of the female persuasion
in fruitful conversation. He was very grateful when the
computer science department organised a ball, and invited
the first grade nurse students. There he saw her, the woman
of his dreams. But as most of us do in such situations, he
froze up, and did not dare to approach her.

After a few days of regretting his lack of action, Rune
Johan decides to make up for it. He finds her name, Celina
Middleware, but does not want to contact her before he
has made a decent plan. He starts by locating one of her
friends, Bjørgfrid, and invites her to a cup of coffee. After
a few minutes of conversation, Bjørgfrid tells that she has
some trouble with her computer. Rune Johan makes a deal
with her. He will fix her computer if she tells him everything he needs to know about
Celina.

It turns out that Celina likes many different kinds of boys, but she is still rather picky.
He could be intelligent, cultivated and well dressed, or own a motorcycle and be slightly
rude. Or he could simply be rich. Rune Johan writes down all the information, and goes
home to finish his plan. He makes an estimate of how many weeks it would take to fulfil
each of the criteria, and tries to decide which combination takes less time. He thinks that
he can work on all of them in parallel.

Figure 1: What Rune Johan must become to conquer Celina Middleware.

11

Input specifications

The first line of input gives the number of test cases, which is at most 100. Each test case
is given as two strings on separate lines. The first string gives the time costs of fulfilling
the criteria, separated by commas. Each cost is given by a string giving the name of the
criterion, a colon, and then the integer time cost of the criterion in weeks. The names
contain symbols ’a’ to ’z’, and their length is from 1 to 20. The costs are between 0 and
1000 inclusive. There will be no more than 20 different criteria.

The second string gives the combinations of criteria which will satisfy miss Middleware.
Each combination is separated by the symbol ’&’, and the criteria are separated by
the symbol ’|’. There will be between 1 and 10 combinations in each scenario. Each
combination will contain at least one criterion, and name no criterion more than once.

Output specifications

For each test scenario, output a line with the minimum time cost in weeks for satisfying
Celina’s desires.

Sample input

3

intelligent:0,cultivated:4,welldressed:2,motorcycleowner:3,rude:8,rich:100

intelligent&cultivated&welldressed|motorcycleowner&rude|rich

ab:13,b:17,cab:21

ab&b|b&cab

a:14,b:13,c:14,d:11

a&b&c|d&a&c|a|b&d

Output for sample input

4

17

13

12

Problem E

Party

Kjell Bratbergsengen, head of the computer science depart-
ment, is concerned about the small number of girls studying
computer science at NTNU. Representatives from Norwe-
gian software companies complain constantly, but Kjell be-
lieves that the most dangerous possible effect of this problem
is low overall recruitment in the future. It is well known that
geeks usually do not have parents who studied at Dragvoll,
and Kjell wants to do all he can to make sure his current stu-
dents gets the opportunity to reproduce with decent part-
ners.

While considering how to cope with this problem, Kjell
remembers how things were when he studied at Gløshaugen.
He recalls a lot of cute nurse students. It was not always
easy to connect with them, as they were usually more interested in medical doctors than
geeks, but charming young Kjell had his share of success nonetheless. Kjell believes that
todays students also have a chance, and decides to arrange a party. Some male students
already have girlfriends, but Kjell wants to make sure that all the single students get
a date for the party as well. He tries to recruit nurse students, but realizes that it is
impossible to get the number he needs, and many of them are picky about who they want
date. How can he get a date for all the single geeks?

After some thinking, he comes up with the solution: He can just arrange several
parties with the same girls! It is expensive to arrange parties, so there should be as
few as possible. Even though Kjell is a talented programmer, he is now very busy with
administrative chores, and needs your help writing a program which decides the minimum
number of parties he will have to host.

Input specifications

The input has n ≤ 200 cases, and the first line consists of a positive integer giving n. The
first line for each test case consists of two positive integers separated by a single space,
m ≤ 100 and f ≤ 50, where m denotes the number of male students who need a date,
and f the number of nurse students available.

Then follow f lines. Line number i represents nurse number i. The line starts with a
positive integer giving the number of male students she is willing to date. Then follows
a list of space separated unique integers naming these geeks. The male students are
numbered from 0 to m− 1.

13

Output specifications

Output one line for each test case. If it is impossible to make sure all male students
get a date, no matter how many parties Kjell arranges, output a line with the text
“impossible”. Otherwise output a line with a single integer giving the minimum number
of parties needed to make sure all male students can attend a party with a date.

Sample input

3

3 3

1 0

1 0

2 1 2

5 3

5 4 3 2 1 0

1 0

2 0 1

3 2

1 0

2 0 1

Output for sample input

2

3

impossible

14

Problem F

Save the computer!

Life as a computer science student is hard. Apart from the
curriculum related challenges, one also has economical ones.
Some of the funding needs to be spent on food, rent, and
so on, but we all agree that it is way more important to
have enough money to make sure your precious computer is
always up and running.

Even though the funding from L̊anekassen is more or less
evenly distributed over the semester, you have realized that
except for the first month you need all the money you get for
food and rent. You thus have to get your computer budget
from the first month, and have a certain sum available. If
you do not use this sum the first month, you will surely waste it on gadgets, so you better
spend it wisely on computer equipment as soon as you get the money.

As we all know, a computer consists of several components. If any one of these
fails, the computer fails. If so happens, you of course have the discomfort of having to
find something else to do, and you also have to deal with constant teasing from your
friends while your PC is down. It is obvious that you need to plan ahead to avoid this
embarrassing situation.

You realize that you should use your computer budget on spare components. In that
way, if a component fails, you can replace it immediately, and your computer will work
again. Components fail at different rates, and they also have different prices. Your task
now is to maximise the probability that your computer will work the whole semester,
by deciding how many spares of each component you should buy within your restricted
budget.

In order to solve this task, you have to model the rate of failure of the different
components in your computer. This is usually done with a Poisson distribution:

Pi(k, t) =
e−λit(λit)

k

k!

Pi(k, t) is the probability that component i will fail exactly k times during t time units.
We will only look at this problem for one semester at a time. The variable t can thus be
set to 1 permanently, and the equation reduces to:

Pi(k) =
e−λiλk

i

k!

λi is the expected number of times component i will fail in one semester. You may
assume that the probability that one component fails is independent of the failure of
other components.

15

Input specifications

The input has n ≤ 50 cases, and the first line consists of one positive integer giving n.
The input for one test case consists of 3 lines. The first line contains two positive

integers separated by a single space, 1 ≤ c ≤ 500 and 0 ≤ b ≤ 500. c is the number of
components in your computer that may fail, and b is the size of your computer budget.

Next follows one line with c floating point numbers in double precision. The ith number
denote the expected number of times component i will fail in one semester, 0.0 ≤ λi ≤ 5.0.
The last line of each test case consists of c positive integers. The ith number denotes the
price of component i, 1 ≤ ri ≤ 100.

Output specifications

For each test case, you should output a single line with the maximum probability of
survival you can achieve, with 5 digits precision.

Sample input

2

2 3

0.5 0.3

3 1

3 10

0.8 0.0 0.2

5 3 2

Output for sample input

0.67399

0.80786

16

Problem G

Fridge of Your Dreams (easy)

Eirik drinks a lot of Bingo Cola to help him program faster,
and over the years he has burned many unnecessary calories
walking all the way to the kitchen to get some. To avoid
this he has just bought a small fridge, which is beautifully
placed next to his computer. To make it match his fancy
big-tower with all its blinking LEDs, it is necessary to style
it a bit.

He has bought a weight sensor with a display and a small
general purpose programmable chip, to put underneath the
fridge. The idea is to make the display show how many
litres of Bingo Cola there is in the fridge. To do this he
must read a binary register in the sensor, and convert it to
a decimal number to be displayed.

Input specifications

The first line of input gives n ≤ 1000, the number of test
cases. Then follow n lines with positive numbers represented as 24-bit binary strings (0s
and 1s).

Output specifications

For each number, output its decimal representation, without any leading zeros.

Sample input

5

000000000000000000000001

000000000001010101010101

000000000000000000001010

101011001010101100101101

111111111111111111111111

Output for sample input

1

5461

10

11316013

16777215

17

18

Problem H

Scorched Earth

The problem has been slightly simpli-
fied after the contest to fix some bugs
and difficulties. The original problem
had 0 ≤ d ≤ 180 and no limitation
xu < xo.

General Arne Heisveis is a victim
of the constant cuts in funding for
the Norwegian defence. There is
basically no money available, and
Arne is forced to spend his workdays
in a dull office doing nothing.

To avoid an unworthy death from
boredom, one of Arne’s colleagues
found an old computer game called Scorched Earth, which the generals now play all day.
The problem is that Arne is not very talented in this game, but still very competitive. He
therefore wants you to write a program to help him cheat.

A screen-shot from Scorched Earth is shown above. The generals’ contest will be a
series of battles between two players, and the only allowed weapons are small missiles.
Each player controls a tank, and the objective is to destroy the opponents tank by shooting
it. The players take turns in shooting, and control the angle and initial velocity of their
missiles. The initial velocity can never exceed 300.0 m/s, and can of course never be
negative.

In order for a projectile to hit, it must avoid all the mountains in the field, and have the
correct velocity and angle to hit the opponent. The gravity is always 9.8 m/s2, and there
may also be wind. To keep things simple, we assume that the wind gives the projectile a
constant acceleration.

Arne is quite confident in finding an angle that will avoid all the mountains in the
battlefield, but needs your help adjusting the velocity of the shot.

Input specifications

The input has n ≤ 1000 cases, where n is given by the first line of input. Each test
case is described by a line with 6 floating point numbers xu, yu, xo, yo, w, d. Your tank is
positioned at (xu, yu) in meters, and your opponents at (xo, yo), where 0.0 ≤ xu < xo ≤
1000.0 and 0.0 ≤ yu, yo ≤ 800.0. The number −2.0 ≤ w ≤ 2.0 gives the acceleration in
m/s2 of the projectile along the x-axis caused by the wind. The angle chosen by Arne is
given by 0 < d < 78 in degrees. An angle d = 0 implies a shot along the increasing x-axis,
and d = 90 would have implied a shot along the increasing y-axis.

19

Output specifications

Output for each test case a line with an initial velocity within the bounds which will
ensure a hit, with 5 digits precision. If this is not possible, output a line with the text
“impossible”.

Sample input

2

0.0 0.0 500.0 0.0 0.0 45.0

100.0 0.0 500.0 0.0 0.0 135.0

Output for sample input

70.00000

impossible

20

Problem I

Free Willy

Willy is sitting behind bars in Alcatraz. Jan Erik Vold is
guarding him, and gives him a challenge:

”I managed to transform KULTURUKE into UK-
TURKULE by applying these permutations in succession:

bcdefaghi cabfdeghi bcadefghi adcefgbhi cgabdefhi
cdaefhgbi

That’s what gave me the start of my great poem: KUL-
TURUKE ULTURKUKE TULKURUKE ULTKURUKE
UKTURULKE TLUKURUKE UKTURKULE

Now, I want you to do the transformation using the same
set of available permutations. I permuted 6 times, but if you
can manage to do it by permuting fewer times than I did,
then I’ll unlock the cage!”

”That’s easy, I only need 4 permutations!” says Willy,
”You first apply bcadefghi to get ULKTURUKE. Then cdaefhgbi to get KTUURKULE.
Then bcadefghi again to get TUKURKULE. And finally bcadefghi a third time to get
UKTURKULE.”

”Oh, you’re not a big, dumb fish after all” says Jan Erik and brings out the keys.
Willy jumps into the ocean and lives happily ever after!

Input specifications

The first line of the input gives the number of test cases T ≤ 30. The first line of each test
case contains 1 ≤ N ≤ 26, 1 ≤ P ≤ 10, and 1 ≤ L ≤ 10. The second line contains two
words with N characters each. Then follow P lines, each with an allowed permutation of
the first N letters of the alphabet (in lowercase).

Output specifications

For each test case, output one line with the minimum number of times you need to apply
one of the allowed permutations to the letters of the first word in order to arrive at the
second word, or “whalemeat” if it’s not possible to do it in at most L steps.

21

Sample input

3

9 6 5

KULTURUKE UKTURKULE

bcdefaghi

cabfdeghi

bcadefghi

adcefgbhi

cgabdefhi

cdaefhgbi

9 5 4

kulturuke tlukuruke

bcdefaghi

cabfdeghi

bcadefghi

adcefgbhi

cgabdefhi

9 3 4

WILLFREEY FREEWILLY

bacdefghi

abghefdic

fecdbaigh

Output for sample input

4

whalemeat

4

22

