© NTNU
 Innovation and Creativity

Presentation of solutions

Truls A. Bjørklund, Nils Grimsmo
Department of Computer and Information Science April 19th 2008

The Nutty Professor

[^0]

Innovation and Creativity

The Traveling Orienteerer

- Read coordinates into $X[0 \ldots n-1]$ and $Y[0 \ldots n-1]$
- For each route P_{1}, \ldots, P_{p} :
- Sum distances between consecutive control points P_{i} and P_{i+1} :

$$
-\sqrt{\left(X\left[P_{i+1}\right]-X\left[P_{i}\right]\right)^{2}+\left(Y\left[P_{i+1}\right]-Y\left[P_{i}\right]\right)^{2}}
$$

Traffic Load

- Put the hits on the left and right chord in sorted sets L and R.
- As long as there are hits not accounted for:
- If a first is $t \in L$:
- Count one from the left.
- Remove $t \in L, t+500 \in L, t+1000 \in R, t+1500 \in R$.
- Or the first is $t \in R$:
- Count one from the right.
- Remove $t \in R, t+500 \in R, t+1000 \in L, t+1500 \in L$.

Innovation and Creativity

The Still Embarrassed Cryptographer

Example

$-S=$ CRYPTO
$-T=$ CPTOYR

- Application:
- $\operatorname{crypt}^{1}($ CRYPTO $)=$ CPTOYR
- $\operatorname{crypt}^{2}($ CRYPTO $)=$ COYRTP
- $\operatorname{crypt}^{3}($ CRYPTO $)=$ CRTPYO
- $\operatorname{crypt}^{4}($ CRYPTO $)=$ CPYOTR
- $\operatorname{crypt}^{5}($ CRYPTO $)=$ COTRYP
- $\operatorname{crypt}^{6}($ CRYPTO $)=$ CRYPTO
- Permutation contains cycles (C), (R,P,O) and (Y,T).
$-\operatorname{lcm}(1,3,2)=\operatorname{lcm}(\operatorname{lcm}(1,3), 2)=6$
$-6-1=5$

Innovation and Creativity

TV Battle

— Observation: there are a lot of shows (possibly 100000), but only 10080 seconds in a week.

- The following recursive formula is thus a good basis for a solution based on dynamic programming:

$$
m f(t)=\max \left\{\begin{array}{l}
m f(t-1) \\
m f(t-d u r(s))+f u n(s) \quad \text { for shows with end }(s)=t
\end{array}\right.
$$

- Use the above formula in bottum-up dp (for example) and you have a correct solution.

Vampire

- Calculate chance of at least y successes with x throws.

$$
\mathrm{P}(x, y)= \begin{cases}1 & \text { if } y=0 \\ 0 & \text { else if } x=0 \\ 0.1 \cdot \mathrm{P}(x, y-1)+ & \\ 0.2 \cdot \mathrm{P}(x-1, y-1)+ & \\ 0.7 \cdot \mathrm{P}(x-1, y) & \text { otherwise }\end{cases}
$$

- Memoize function.

Eight Puzzle

Representation of state

- Array rather than matrix.
- Integer (123456789) rather than array.

Solution

- Set up legal moves for blank:
- $1 \rightarrow\{2,4\}, 2 \rightarrow\{1,5,3\}$, etc..
- BFS from goal state 123456789.
- Note distance to each reachable state.
- For each input problem:
- Translate to integer presentation.
- Print distance if reachable.

Innovation and Creativity

Paper

Solution

- Each expr. has a signature from 2^{3} different inputs of x, y, z $-2^{\left(2^{3}\right)}$ different sigs.
- BFS from sigs of x, y and y.
- Need only remember shortest for each signature.
- Example $e \leftarrow(f \mid g)$:
- e.sig $:=f$. sig $\mid g . \operatorname{sig}$
- e.size $:=1+f$.size $+1+g$.size +1
- String representation of no use.
- Generate exprs. in order of length.
- Do not need to store size explicitly.
- Store only sigs as ints.

Innovation and Creativity

Tree of Pain

- Find injective mapping f from tree P to tree T.
- $f(u)=f(v)$ iff $u=v$,
- label $(u)=\operatorname{label}(f(u))$, and
- u is an ancestor of v iff $f(u)$ is an ancestor of $f(v)$.
- Complexity of Unordered Tree Inclusion? Sweet reduction from SAT. Buy me a beer and l'll show you.

Tree of Pain

- Bottom-up traversal of T.
- Maintain S, set of set of pattern nodes p matchable at t.
- S_{1}, \ldots, S_{q} at child number $1, \ldots, q$ of t respectively.
- If $s_{1} \in S_{1}, \ldots, s_{q} \in S_{q}$:
- $s_{1} \cup \cdots \cup s_{q} \in S$ (cross S^{\prime} es from children).
- If children $(p) \in S$ and label matches:

$$
-\{p\} \in S
$$

- $\operatorname{root}(P) \in S \Rightarrow$ We have a match.

Tricks

- Interested only in sets of siblings.
— set<int> instead of set<set<Node*\gg
$-s_{i} \in S$ not interesting if $s_{i} \subseteq s_{j} \in S$.

Innovation and Creativity

[^0]: System.out.println(d+n(p-s)>0?"do not parallelize":
 d+n(p-s);<0?"parallelize":"does not matter");

