
IDI Open
Programming Contest

April 25th, 2009

Solution sketches

A Letter Cookies

B Bicycle Puzzle

C Geometry Darts

D Box Betting

E Communication Channels (Easy)

F Train Tickets

G Counting Sheep (Easy)

H Rubik’s Cube

I Marble Madness

J Robberies

K Robot Encryption

Problem A

Letter Cookies

Problem author: Børge Nordli

This problem can be solved by fairly straightforward
counting: For each test case, allocate an array of ints,
Box[1 . . . 26], which keep track of the number of each
letter in the box. Then, for each candidate word, create
another array in exactly the same manner, Word[1 . . . 26],
and compare the two arrays value by value:

∀i ∈ {1, . . . , 26}, Word[i] ≤ Box[i].

Tip: The easiest way to convert from char c to int a is by using the idiom
int a = c - ’A’.

2

Problem B

Bicycle puzzle

Problem author: Børge Nordli

First you need to find the optimal strategy of the puzzle: It
is obvious that one swap of rectangles should at least put
one of them into its correct position. But sometimes the
player is lucky and both rectangles will be placed in the
correct position. It is quite easy to show that if the player
plays this “one-rectangle-into-its-correct-position”-strategy,
it does not matter which order the swaps are conducted in:

Treat the puzzle as a permutation of N = WH numbers,
and write the permutation in cycle notation, including
cycles of length one, for example: [341526] = (13)(254)(6).
Then each swap will reduce the length of one cycle by one
and create one new cycle with length 1. Example: [143526] = (1)(254)(3)(6), and
[321546] = (13)(2)(54)(6). So the optimum number of swaps from the current permutation
is always N − (# of cycles in the permutation). Therefore, the players are totally
dependent on the original scrambling of the puzzle, and the problem is reduced to finding
the distribution of the number of cycles of a random permutation of N numbers.

This can be found in many ways, but the simplest is by Dynamic Programming:

• A permutation of 1 number always has 1 cycle.

• A permutation of n numbers can be generated uniformly from taking a random
permutation of n−1 numbers and then inserting the number n in a random position.

• A permutation of n numbers with c cycles is either generated from a permutation
of n− 1 numbers with c− 1 cycles (if n is inserted in the last and correct position:
1 possibility), or from a permutation of n− 1 numbers, also with c cycles, where n
is inserted in any of the existing cycles (n− 1 possibilities).

Let D[n, c] be the number of permutation of n numbers with c cycles, then D[1, 1] = 1
and D[n, c] = 1 ·D[n− 1, c− 1] + (n− 1)D[n− 1, c]. The probability that the puzzle can
be solved in less than S moves is equal to the probability that a random permutation of
N numbers has more than N − S cycles:

valid permutations

total permutations
=

1

N !

∑
i>N−S

D[N, i].

The limits are chosen such that the numbers fit nicely in a 64 bit integer (20! < 263).
(You also need to implement Greatest Common Divisor (gcd) to output the fraction

correctly: gcd(a, b) = (b == 0) ? a : gcd(b, a mod b).)

3

Problem C

Geometry Darts

Problem author: Børge Nordli

This problem is about deciding whether a given point is
inside our outside various shapes, and then it is just a matter
of counting and adding to find the two player’s scores.

There are three cases that have to be solved separately:

1. Circle with center (x, y) and radius r: A point (x′, y′)
is inside this circle if and only if its distance to the center
is less than r:

(x′ − x)2 + (y′ − y)2 < r2.

2. Rectangle with corners (x1, y1) and (x2, y2): A point (x′, y′) is inside this rectangle
if and only if its coordinates lie inside the respective intervals:

x1 < x′ < x2 AND y1 < y′ < y2.

3. Triangle with corners P1, P2 and P3: This is the trickiest case, but the
standard way to solve it is to check whether the point P lies at the same side (left

or right) of all the directed line segments
−−→
P1P2,

−−→
P2P3 and

−−→
P3P1. This can be done

either by looking at the signs of the cross products
−−−−→
PiPi+1 ×

−−→
PiP , or simply by using

java.awt.geom.Line2D(Pi, Pi+1).relativeCCW(P).
It is also possible to check whether the triangle areas match:

P1PP2 + P2PP3 + P3PP1 = P1P2P3,

but this method is more suspectible to over- and underflows.

4

Problem D

Box Betting

Problem author: Eirik Reksten

In this problem we need to find the probability
that the sum of a substring chosen with the
described method lies below, above or inside an
interval of two numbers.

In short, sum the probabilities for each
possible starting point, and divide by the length
of the sequence. Then the only problem that
remains is to find the probability for a given
starting point in at most O(log(N)).

Given a starting point, the probability for the
sum of a subsequence lying in an interval is the
amount of substrings in that interval divided by
the total amount of substrings with that starting
point. This can be found in O(log(N)) using
binary search: Start by creating a cumulative
list of sums for the lists starting at index 1 and ending at index i. Then the sum in a
single substring [i, j] is cumu[i]− cumu[j − 1]. The binary search then gives us the indices
of the end points of the shortest substring with a sum higher than or equal to L, and the
first with sum higher than U . Simple math then gives us the probability of each of the
cases for this starting point.

But we can do even better than that. We can use the fact that the boundary (first
substrings above the limits) indices will never decrease as the starting point is moved
through the list. Therefore, it suffices with a linear search through the list from the
previous boundary indices. This gives an amortized running time of O(1) for each starting
index, as none of the end pointers will be moved more than N times.

5

Problem E

Communication Channels

Problem author: Børge Nordli

The problem statement can more or less be ignored. By
reading the input and output specification, you can see that
you only need to compare the input and output strings of
the channel for equality.

A complete solution in Java:

public class channel_bn {

public static void main(String[] args) {

java.util.Scanner in = new java.util.Scanner(System.in);

for (int i = in.nextInt(); i --> 0;)

System.out.println(in.next().equals(in.next()) ? "OK" : "ERROR");

}

}

6

Problem F

Train Tickets

Problem author: Eirik Reksten

At first sight, one would be tempted to believe that there
has to be some dynamic programming solution that works
for this problem. In such an approach you’ll quickly run
into problems when it comes to dividing the problem into
independent subproblems.

Thus, we need to develop a different solution, and I’ll
derive a max-flow solution here. To begin with, we add a
node for each group of people (those travelling from station
i to station j), as well as one node for each station. Adding a source edge to each group
of people will represent the demand for that exact ticket. We now need to enforce that
each group actually travel to the station they want to go. Adding an infinity capacity
edge from the group to its arrival station, as well as an edge from each station to the sink
ensures this. The latter edge has a capacity equal to the total amount of people wanting
to go to that station.

At this point, we’ve make sure that all people are able to go to the station they’d
like, but we are still not making any money (they are travelling by other means, so to
speak). In order to allow travelling along the train, we add an edge between each station,
with the capacity of the train as its capacity (government officials subtracted, of course).
In addition, we add another edge from a demand group to its departure station (infinite
capacity here as well). Now, travelling by train is possible, but this doesn’t give us the
configuration that leads to a maximization of profit. This is found by adding the ticket
price as cost on the edge between every demand group to its departure station.

Running a max-cost max-flow algorithm (i.e. max-flow with a shortest path algorithm
for finding augmenting paths) will find the optimal configuration, while the cost found is
the answer to the task.

7

Problem G

Counting Sheep

Problem author: Eirik Reksten

This problem was marked easy even though it probably is
a little harder than Letter Cookies. The reason is that
for everyone that knows how a breadth-first search works,
this is a very standard problem. For everyone that doesn’t,
now would be the best time to start learning. BFS is one
of the most fundamental algorithms (not to mention its
usefulness), and can be found as subroutines to a lot of
other algorithms as well (i.e. max-flow).

There are several approaches to this problem. The most
obvious ones are probably to iterate through the matrix, initiating a breadth-first searc
(BFS) or non-recursive depth-first search (DFS) every time you find an unmarked sheep.
Mark all sheep found by the search and increase the flock count by one.

You could also do this with a disjoint set datastructure. In the beginning, initiate
the structure with one set for each different sheep. Then iterate through the matrix.
Whenever you encounter two ”neighbouring” sheep, merge the sets containing these. The
solution is the amount of sets in the structure when this is done.

8

Problem H

Rubiks Cube

Problem author: Børge Nordli

Counting rotated versions of the same cube multiple times,
the 2 × 2 × 2 Rubik’s cube has 8!37 = 88179840 states1.
This is too much for an exhaustive search, but by fixing
the position and rotation of one corner, thus counting
rotated versions of the same cube only once, there are only
7!36 = 3674160 states. This will still take some time for
a normal Breadth First Search (BFS), but by applying the
standard trick of double-sided (or meet-in-the-middle) BFS,
a back-of-the-envelope calculation2 suggests that an order of
about 50000 states would be examined.

After deciding the algorithm, all what’s left is the
implementation. But this is definitively not trivial. The trickiest part is implementing
the moves. Clearly a state can be represented as 24 integers (even half-bytes will suffice),
and a move is just a permutation of these numbers. It is advised to check which faces
goes to which ones with paper and pencil before inserting numbers in the code. Just
remember that one corner is keeped fixed, so there are three separate moves (turning the
“other” half of the cube) that can be performed in both directions. One move becomes a
permutation consisting of 3 cycles of 4 numbers each, and the 12 other numbers are kept
untouched.

Then of course you need to implement equals and hashCode (or compareTo) to be
able to recognize states we have already seen, using a HashSet (or a TreeSet), but we
can use standard implementations of by using standard methods on the underlying array,
or even on the String representation given in the problem.

The last hurdle is deciding how the solved cube should look like, from where you should
start the BFS in the other direction. (The cubes in the input are not all the same!) The
2 × 2 × 2 cube is different from the 3 × 3 × 3 cube in such a way that its faces have no
centers, so it is a little harder to determine how the solved cube would look like, given a
scrambled cube. But by looking at all corners, it is possible to find out which colors are
adjacent. Then you can either just create a different solved version for each test case, or
canonicalize the colors of the scrambled cube3.

1There are 8 corners that can be freely placed, but after placing and rotating the first 7 corners, the
last corner must be placed in a correct position in order to be able to solve the cube.

2Assuming one move on average reaches about 4 new states, the maximum number of moves would
be around log4 7!36 ' 11, adding a couple of moves for outliers, the reasonable bound of the numbers of
states that must be examined is about 2 · 414/2 ' 32000.

3And with this approach you can even reuse the solved half of the BFS between test cases.

9

Problem I

Marble Madness

Problem author: Truls A. Bjørklund

Note that for each move, the total number of marbles in
the bag is reduced by one, and the number of white marbles
either stays constant or is reduced by two. So, if the bag
originally contains an odd number of white marbles, the
last marble will always be white, and if the bag originally
contains an even number of white marbles, the last marble
will always be black.

A complete solution in C/C++:

#include <stdio.h>

int main() {

int n, w; scanf("%d", &n); while (n--) {

scanf("%d %d", &w, &w);

printf("%d %d\n", (w+1)%2, w%2);

}

}

10

Problem J

Robberies

Problem author: Nils Grimsmo

After you realize that this can be solved by Dynamic
Programming on the banks and outcome (in millions), this
problem is quite easy to code:

Let D[b, m] be the (best) probability Roy the Robber can
achieve of escaping with exactly m millions after considering
banks 1 through b. Then:

• Roy will never get caught if he doesn’t rob any banks:
D[b, 0] = 1.0, for all 1 ≤ b ≤ N .

• Let bank i contain Mi millions: Roy could chose either to
rob this bank or not: If he doesn’t rob it, the probability
of getting away with exactly j millions is equal to D[i−1, j]. If he chooses to rob it,
the probability is (1−Pi) ·D[i− 1, j −Mi]. Roy would of course want to maximize
the probability of not getting caught, so

D[i, j] = max(D[i− 1, j], (1− Pi) ·D[i− 1, j −Mi]).

Of course j −Mi can be less than 0, so make sure to check for this.

• In the end, Roy wants to get away with as much as
possible, so the answer is the largest m such that this
inequality is true: D[N, m] ≥ 1− P .

(You can also do DP to minimize the probability that he will get caught, or letting
D[b, m] be the possibility that he will escape with at least m millions.)

11

Problem K

Robotic Encryption

Problem author: Rune Fevang

The first thing to realise is that trying to simulate the entire
behavior of the robot will consume too much time. In
the worst case (by nesting ”FF” 16 levels deep), the robot
requires 2 · 916 = 3, 706, 040, 377, 703, 682 steps. This is
obviously too much.

The key to solving this problem lies in realising that
there is a limited number of possible states the robot can
be in. There are a W ·H positions, and 4 directions, giving
us S = 4 ·W ·H possible states.

Now, each instruction can be seen as just a permutation
of those states. A permutation representation of an
instruction would be an array P[1 . . . S], where P[i] would contain the state index of where
state i would end up after executing the instruction.

Using this representation we can build more complex instructions from simpler
ones. Two consecutive instructions A and B can be combined into C by executing
∀i ∈ [1 . . . S], C[i] = B[A[i]]. Loops can be implemented simply by combining the
instruction inside it with itself the number of times the loop indicates.

Homework: How would you solve this problem if there was no bound on the number of
times a loop could be repeated?

12

