
IDI Open
Programming Contest

April 17th, 2010

Problem Set

A Guarding the Border

B Beehive Epidemic

C Mobile Gaming

D Balancing Weights (Easy)

E Ambulance Antics

F Nurikabe

G Cookie Monster (Easy)

H Typing Monkey

I The Diligent Cryptographer

J Combat Odds

Jury and Problem Writers

Eirik Reksten, Steria

Ruben Spaans, IDI/NTNU

Tor Gunnar Høst Houeland, IDI/NTNU

Rune Fevang, Opera Software

2

Tips
• Tear the problem set apart and share the problems among you.

• Problems are not ordered by difficulty.

• Try solving the easy problems first. Two problems in this set are tagged with
“(Easy)” to help point you in the right direction.

• If your solution fails on a problem, you can print your program and debug it on
paper while you let someone else work on a different problem on the computer.

• If you need help, contact the judges.

Rules
• Each team consists of one to three contestants.

• One computer is used per team.

• You may not cooperate with persons not on your team.

• You may print your programs on paper to debug them.

• What you may bring to the contest:

– Any written material (Books, manuals, handwritten notes, printed notes, etc).

– Pens, pencils, blank paper, stapler and other useful non-electronic office
equipment.

– NO material in electronic form (CDs, USB pen and so on).

– NO electronic devices (PDAs and so on).

• The only electronic content you may consult during the content is that specified by
the organiser (see the web-page). You may not copy source code from web pages,
etc.

• Your programs should read from standard in and write to standard out. Writing to
standard error will result in a failed submission. C programs should return 0 from
main().

• Your program may use at most 100MB of memory.

• Your programs may not:

– access the network,

– read or write files on the system,

– talk to other processes,

– fork,

– or similar stuff.

– If you try, your program will hang or crash. If it hangs, it will take a couple
of minutes before others will be able to run their programs. And please do
not crack somebody who uses their spare time trying to give you something
valuable.

• Show common sense and good sportsmanship.

3

4

Problem A

Guarding the Border

As newly appointed Chief of Security, you
have decided that it’s time to upgrade the
border defense. There have been rumors of
some neighboring countries developing nuclear
weapons, so a few extra archer towers will be
needed. In order to spot the miscreants when
they approach, you would like to minimize the
maximal distance between adjacent towers.

The border is modeled as a cyclic straight
line from 0 to L, with N (old) towers placed
along it. The country is an inland country, so
the first and last towers are neighboring as well
(consider points 0 and L to be the same). You
have enough finances to place up to M new
towers along the border. Find the lowest possible
maximal distance between adjacent towers after
the placement.

Input specifications

The first line of input contains a single number T , the number of test cases. Then follow
T lines, each describing a test case. Each test case starts with three integers N , M and
L. N is the amount of towers already present at the border, M is the maximum amount
of new towers you are allowed to place and L is the length of the border. Then follow N
floating-point numbers ti describing the locations of the current towers.

Output specifications

For each test case, output one line containing a single number, the lowest possible maximal
distance between adjacent towers after the placement.

5

Notes and Constraints

• 0 < T ≤ 100
• 0 ≤ N ≤ 20000
• 0 < M ≤ 20000
• 0 < L ≤ 10000000
• 0 ≤ ti < L
• No two towers are located at the exact same location.
• An absolute or relative error of up to 10−7 compared to the correct answer will be

accepted for the distances.

Sample input

2

0 3 15

2 1 1000 667.4 333.8

Output for sample input

5

333.6

6

Problem B

Beehive Epidemic

In the last couple of months the wretched bee flu
has been on the rampage. To battle extinction,
the bees of Inner Dreaded Illnessia have set up
a system of safe zones in their hives. Sadly, they
can’t create such zones everywhere (they need
somewhere to place the honey as well), so there
is always chaos when the bacteria appear in the
hive. You need to help the bees, and figure out
how many of them can be saved if they organize
themselves optimally.

The beehive is a hexagonal grid (see illustra-
tion), and a bee can move from the zone where
it’s located to any neighboring one once every
second or it can choose to remain in the same
cell (clarification). At the same time, the bacte-
ria will spread from every cell containing it to all its six neighbors once every two seconds.
Safe zones stay in the same location (of course). If a bee reaches an empty safe zone before
the bacteria does, it can withstand infection by staying there until the danger passes. Due
to the functioning of these things, only one bee can stay safe at each of these zones at the
same time.

Input specifications

The first line of input contains a single number T , the number of test cases to follow.
Each test case consists of four lines. The first line contains the numbers N , S and B, the
number of bees, safe zones and bacteria, respectively. Then follow three lines describing
the initial locations of each of these. The first line describes the locations of the N bees,
the second the locations of the S safe zones, while the third describes the locations of
the B bacteria. Each line is formatted x1y1x2y2...xkyk, where k represents the amount of
locations (N , S or B).

Output specifications

For each test case, output one line containing a single number, the maximum amount of
bees that can survive the epidemic.

7

Notes and Constraints

• 0 < T ≤ 150
• 0 < N,S ≤ 50
• 0 < B ≤ 1500
• −100 ≤ xi, yi ≤ 100
• The bees make up to two moves before the bacteria spread for the first time (and

then two more moves before the spread continues, and so on).
• Though only one bee can stay safe at a single safe zone, there is no problem for bees

to stay in the same zone (even safe zones).
• The earliest time a bee can be safe at a safe zone is after their first move. That is,

they are not hiding ”just in case”.
• The beehive is very large. For the purposes of this problem, assume that the bees

won’t be able to make it outside (without growing tired and having to take a break
until the bacteria catches up).

Sample input

1

2 2 1

-1 2 1 -2

-3 1 1 1

-1 -1

Output for sample input

2

8

Problem C

Mobile Gaming

Online gaming using mobile phones has exploded
in popularity, and you’ve thrown yourself on the
wave, now creating a kind of cop-and-robber
type of game. Some players control the cops,
while others control the robbers. The objective
for the cop players is to catch the robbers,
while the robbers will try to escape. During
development, you’ve recently encountered a
problem. There is a significant lag in the update
rate on the mobile phones. You might get
updates on player positions as seldom as once
every second. Since scoring is based on when the
cops caught the robbers, you need to calculate
this exact time.

Cops and robbers are modeled as rectangles in the game world, and a cop has caught
a robber if their rectangles overlap. You are given the sizes of the rectangles, as well as
their positions in time 0 and 1. Your program should calculate whether the rectangles
have overlapped at some point in this time interval and, if so, at what time this happened
for the first time (clarification).

Input specifications

The first line of input contains a single number T , the number of test cases to follow.
Each test case consists of two lines, containing 6 numbers each. The first line contains
the integers W1, H1, Xstart1, Y start1, Xend1 and Y end1. W and H describe the width
and height of the policeman rectangle, respectively. Xstart1 and Y start1 describe the
policeman’s starting point (the upper left corner), while Xend1 and Y end1 describe his
end point (his location at time 1). The second line contains six integers W2, H2, Xstart2,
Y start2, Xend2 and Y end2, the corresponding numbers for the robber.

Output specifications

For each test case, output one line containing a single number, the earliest (clarification)
instant in time (a real number between 0 and 1, inclusive) in which a collision occurs. If
there is no collision, output No Collision instead.

9

Notes and Constraints

• 0 < T ≤ 100
• 0 < Wi, Hi ≤ 100
• 0 ≤ Xstarti, Y starti, Xendi, Y endi ≤ 10000
• The coordinate system has increasing x-values from left to right, and increasing

y-values from top to bottom.
• A collision occurs if the two rectangles overlap or if their sides/corners touch.
• Assume that both the cop and robber moved in a straight line.
• An absolute or relative error of up to 10−7 compared to the correct answer will be

accepted.

Sample input

3

2 2 0 0 0 8

2 2 2 10 2 2

5 5 10 10 0 0

1 4 0 0 10 0

4 4 3 9 10 18

3 3 8 14 15 23

Output for sample input

0.5

0.6

No Collision

10

Problem D

Balancing Weights (Easy)

Ever since you started studying, your
whole family have been expecting you
to know the answers to a whole lot of
difficult questions. What is wrong with my
computer? What is the name of Prince
Harry’s new girlfriend? Have you seen
my new pants? Your grandfather has just
found a new problem for you, and you are
yet again under the pressure of finding the
answers to one of life’s most fundamental
questions.

You are given a 20 meter long lever
balanced exactly on the middle by a
massless support. A number of weights are
applied to the lever. You need to figure out which side will drop, if any. Being such a
brilliant mind, you immediately notice that each of the weights will contribute to the total
torque applied on the lever, and that this will determine the answer. The torque from a
single weight is determined by

τ = m× d (1)

where τ is the total torque applied, m is the mass of the weight and d is its distance from
the center. The lever’s angular acceleration can then be found by the equation

α = τ/I (2)

where α is the angular acceleration and I is the lever’s moment of inertia. The moment
of inertia is given by the function

I =

∫
r2dm (3)

where r is the perpendicular distance to the axis of rotation.

11

Input specifications

The first line of input contains a single number T , the number of test cases to follow.
Each test case starts with a line containing N , the number of weights in the test case.
This is followed by a line containing N numbers, W1 W2 ... WN the locations of the N
weights.

Output specifications

For each test case, output one line containing Left if the weight tips to the left, Right if
the weight tips to the right or Equilibrium if the weight does not tip to any of the sides.

Notes and Constraints

• 0 < T ≤ 100
• 0 < N ≤ 100
• −1000 ≤ Wi ≤ 1000
• A negative Wi means that the weight is located to the left of the center, while a

positive one means that it is located to the right.
• The weight of the lever is exactly 2000 grams, uniformly distributed. Each weight

weighs 100 grams.
• Weights are modeled as single point masses.

Sample input

3

3

-2 0 2

1

4

4

4 -2 0 -3

Output for sample input

Equilibrium

Right

Left

12

Problem E

Ambulance Antics

Your friend, the madman Tommy Vercetti,
is in trouble. He has hijacked an ambu-
lance, and has to transport patients that
are scattered around Vice City, to the lo-
cal hospital. He wants to accomplish this
task as soon as possible, so he can carry on
doing other missions (mostly ones involv-
ing brutal violence). Therefore, you must
write a computer program which calculates
the shortest time it is possible to accom-
plish his task.

The ambulance has room for a maxi-
mum of three patients. The ambulance needs to return to the hospital to drop off pa-
tients. Vice City consists of streets and intersections. One intersection is the location of
the hospital, and each of the other intersections contain a patient to be picked up. Each
street is bidirectional, and has a cost associated with it, which is the number of minutes
it takes to drive from one end to the other. Loading and unloading the ambulance is done
instantly. At the beginning of each scenario, the ambulance is at the hospital.

Input specifications

The first line of input contains a single number T , the number of test cases that follow.
The first line of each test case contains two integers N and M , the number of intersections
containing patients, and the number of bidirectional streets. The following M lines
contain three integers ai, bi, ci. Each of these lines represent a bidirectional street between
intersections ai and bi, and ci is the number of minutes needed to drive from ai to bi
(or the opposite direction). Vice City has N + 1 intersections, numbered from 0 to N
(inclusive). The hospital is located at intersection N , and there are patients located at
intersections 0, 1, . . . , N − 1.

Output specifications

For each test case, output the minimal number of minutes it takes to deliver all the
patients to the hospital.

13

Notes and Constraints

• 0 < T ≤ 100
• 1 ≤ N ≤ 20
• M > 0
• 0 ≤ ai, bi ≤ N
• 0 < ci ≤ 100000
• There always exists a path between any pair of intersections.
• There are never two or more streets between two intersections.

Sample input

1

2 2

0 1 10

1 2 10

Output for sample input

40

14

Problem F

Nurikabe

Nurikabe is a binary determination
puzzle originating from Japan. Given a
grid where some cells contain numbers,
the objective of the puzzle is to mark
each blank cell as either island (white) or
water (black), while obeying the following
constraints:

• Each island has exactly one num-
bered cell, containing a number be-
tween 1 and 9. The number of white
cells (including the numbered cell) in
this island is equal to this number.
Two cells are connected if they share
a side. Two cells belong to the same
island if there exists a path going
through connected island cells.

• All water cells (black) are connected.
Water cells are connected in the same
manner as island cells.

• Within a 2×2 block there must be at
least one cell belonging to an island.

In this problem, you are asked to verify that Nurikabe puzzles are solved correctly.

Input specifications

The first line of input contains a single number T , the number of test cases that follow.
The first line of each test case contains integers N and M , the size of a puzzle in rows and
columns. The next N lines contain the rows of the puzzle. Each line contains characters
from the set 123456789.# where . and any digit represent an island cell and # represents
a water cell.

Output specifications

For each test case, output YES if the board is filled in correctly according to the rules,
and NO otherwise.

15

Notes and Constraints

• 0 < T ≤ 100
• 1 ≤ N,M ≤ 50
• Recent surveys indicate that more than seven billion chocolate chip cookies are eaten

annually.

Sample input

2

9 10

2.#...##.2

###..#2###

#2#.7#.#.#

#.######.#

##.#..3#3#

.#2####3##

2##4.#..#.

##..#####.

#1###.2#4.

2 2

#1

1#

Output for sample input

YES

NO

16

Problem G

Cookie Monster (Easy)

Everyone needs hobbies, and Christian is no
exception. He is out of this world fond of cookies.
Where there are cookies, you’ll find Christian.
Sadly, he’s not too good at keeping track of his
supplies. He needs to eat at least one cookie
every day, and as long as there are enough left,
he will eat C of them. Given that he has N
cookies left, for how many days will he eat at
least one cookie?

Input specifications

The first line of input contains a single number T , the number of test cases to follow.
Each test case consists of one line containing two numbers, N and C, the total number
of cookies he has and the number he eats every day.

Output specifications

For each test case, output one line containing a single number, the amount of days where
Christian still has cookies to eat.

Notes and Constraints

• 0 < T ≤ 100
• 0 < N ≤ 1000000000
• 0 < C ≤ 5000

Sample input

2

6 2

10 3

Output for sample input

3

4

17

18

Problem H

Typing monkey

You have gotten hold of a monkey which
is able to use a typewriter, and it is even
capable of typing letters from a specific
probability distribution.

You believe that this monkey will even-
tually be able to type Shakespeare’s com-
plete works. Your friend Eirik, however,
believes that the monkey is more capable
of producing another novel in the Harry
Potter saga.

To settle this uncertainty, you must
write a program which calculates the prob-
ability of producing a certain piece of literature before another piece, here represented by
single words. A word is produced if is occurs as a substring somewhere in the stream of
letters typed by the monkey. The monkey is only able to type lowercase letters from the
English alphabet.

Input specifications

The first line of input contains a single number T , the number of test cases that follow.
Each test case consists of two lines. The first line contains 26 floating point values
pa, pb, . . . , pz, the probabilities of the monkey typing each letter, each separated by one
space. The second line contains two strings P and Q, each separated by one space. Both
strings consist of lower case letters from the English alphabet. The two strings will never
be equal, and the probability of the monkey being able to produce the strings is always
greater than zero. There are no test cases where the monkey can produce both strings at
the same time.

Output specifications

For each test case, output the probability of the monkey producing the word P before the
word Q.

19

Notes and Constraints

• 0 < T ≤ 100
• 0 ≤ pα ≤ 1
•

∑
pα = 1

• 0 < |P |, |Q| ≤ 16
• An absolute or relative error of up to 10−7 compared to the correct answer will be

accepted.
• The monkey’s keypresses are independent events.

Sample input

1

0.1 0 0 0 0.1 0 0 0.1 0 0 0 0.1 0.1 0 0.1 0.1 0 0.1 0 0.2 0 0 0 0 0 0

hamlet potter

Output for sample input

0.33333333333333

20

Problem I

The Diligent Cryptographer

Halvor is in charge of the Single Sign-On (SSO) login system for
Identity Directories, Inc. He has been a passionate supporter of their
technology for years, telling anyone who will listen how it makes user
authentication simpler and more secure with the encrypted login back-
end provided by Trustworthy Enterprises (TE). Last week Halvor got
a newsletter from TE, where they introduced their new and highly
innovative Open Trust Protection (OTP) system, which was recently
implemented and has been used for new accounts and users that
changed their password in the last month.

Previously, a user’s cryptographic key consisted of a permutation
of the first letters of the alphabet, repeated many times so it could be
used for long messages. In the new improved system the cryptographic
key instead consists of random letters generated by a lava lamp-based
sub-contractor.

As an example the string BCAEDBCAEDBCAED was a possible key in
the old system since this is a repetition of BCAED, which is a permutation
of the letters from A to E. The strings BCDBCD and BABBABBABBAB

would not be possible, since the letter A is missing from the repeated
permutation BCD, and BAB is not a permutation of AB since there are
two B’s.

Halvor decides to change the keys for the users that have not already
been automatically moved to the new system. Luckily he has read and write access to
all the keys for his users, and has contracted you to write a program to determine which
users need to be updated. To avoid any privacy concerns, you are only given a list of the
user’s names, last login times and up to the first 1000 letters of their key.

Thus for the old system the end of the key substring you receive might be cut off in the
middle of a repetition, but the first letter is guaranteed to be the start of a permutation.
For the new system the entire string will be random, including the letters you receive.

21

Input specifications

The first line of input contains a single number T , the number of test cases to follow.
Each test case consists of one line containing a string K, which is the first part of a user’s
cryptographic key.

Output specifications

For each test case, output a line containing the line ”old” if K is definitely from the old
system, ”new” if K is definitely from the new system, or ”unknown” if this cannot be
determined from the provided key substring.

Notes and Constraints

• 1 ≤ T ≤ 1000
• 1 ≤ |K| ≤ 1000
• All letters in the input string are uppercase (clarification)
• The entropy can be written as H(X) = −

∑n
i=1 p(xi) logb(xi), where p denotes the

probability mass function of X.

Sample input

4

ABCD

BB

HELP

IAMTRAPPEDINACRYPTOGRAPHICKEYFACTORY

Output for sample input

unknown

new

unknown

new

22

Problem J

Combat Odds

On internet forums for games, you’ll always have a bunch
of guys complaining about how they’re losing. It’s always
something wrong with the game. Lack of realism and
cheating AI is among the top choices. Sadly, it’s mostly just
lacking skills. To the rest of us, this becomes an everlasting
quest to show them how wrong they are!

The latest in the never ending series is a guy claiming
that the computer cheats in his newest game. Even though
a 70% probability of winning is reported for a battle, he
still loses! He is quickly shot down by our army of know-
it-alls, but another guy rushes to his support. Even though
you can lose a single battle at these odds, he has observed
5 such losses in a row! The probability of that is (1 − 0.7)5 = 0.00243. Too low to be
possible, he claims! Being such an honorable know-it-all, you explain how that might be
true if those 5 battles were the only events overall, but throughout a whole game there are
a lot more battles than that. The probability of observing such a streak is much larger!
To back up your statement, you decide to calculate such probabilities.

A battle has two outcomes, win or lose. The probability of winning is given by p.
Given that you simulate N battles, what is the probability of witnessing a losing streak
of at least L battles?

Input specifications

The first line of input contains a single number T , the number of test cases to follow.
Each test case consists of one line containing the three numbers N , L and p, separated
by whitespace.

Output specifications

For each test case, output a line containing a single floating-point number, the probability
of witnessing a losing streak of at least L battles.

23

Notes and Constraints

• 0 < T ≤ 200
• 0 ≤ p ≤ 1.0
• 0 < N ≤ 2000
• 0 < L ≤ N
• The game in question is Civilization IV. You can assume that this game has a perfect

random number generator, and that all battle outcomes are independent.
• An absolute or relative error of up to 10−7 compared to the correct answer will be

accepted.

Sample input

2

5 5 0.7

10 5 0.7

Output for sample input

0.00243

0.010935

24

