
IDI Open
Programming Contest

April 17th, 2010

Solution sketches

A Guarding the Border

B Beehive Epidemic

C Mobile Gaming

D Balancing Weights

E Ambulance Antics

F Nurikabe

G Cookie Monster

H Typing Monkey

I The Diligent Cryptographer

J Combat Odds

Problem A

Guarding the Border

Problem author: Eirik Reksten

Imagine you were solving an easier version of
the problem, where you were asked whether or
not you could achieve a maximal distance of
D using at most M towers. This problem can
be solved using a simple iterative loop through
the segment, adding a new tower at every D’th
location. Using this as a subroutine, you can
solve the original problem by binary searching
on the maximal distance, returning the lowest
distance where this is possible. This solution
runs in O(N × log(L)) time.

Another approach is using a greedy algo-
rithm. Observe that between any two of the old
towers, the new ones will/can be evenly spaced
out in an optimal solution. Therefore, the max-
imal distance for a single segment is defined by
its length and amount of new towers. Now, if adding another tower is to improve the
solution, it has to be added to the segment with the highest maximal distance (otherwise
the solution won’t improve, and you’d have to add one to this segment later anyway).

A greedy method thus proceeds by always adding the next tower to the segment with
the highest maximal distance. Using a heap (ie. PriorityQueue in Java) to keep track of
the segment allows this algorithm to run in O(M × log(N)) time.

2

Problem B

Beehive Epidemic

Problem author: Eirik Reksten

In this problem, you’re trying to match every
bee with a corresponding safe zone, aiming
to maximize the amount of safe bees. This
part is easily solved using a maximal beepartite
matching algorithm (such as using max-flow).

To figure out which safe zones a certain bee
can reach without infection, you need to run a
breadth-first search from that bee. A coordinate
system is already shown in the image, so the only
problem with this is to check whether or not a
cell is infected by a bacteria in sufficient time.
In order to do this, you need to precompute the
infection times for each cell. That means another
breadth-first search, where you start by adding
all bacteria locations to the queue. Now you also
need to make sure to let the breadth-first searches run sufficiently far out from the objects
initially, since a bee might want to take a long detour in order to reach a safe zone safely.

Also note that bees, safe zones and bacteria can all be in the same location at the
beginning. A bee starting on a bacteria will never make it (see the notes and constraints
section).

3

Problem C

Mobile Gaming

Problem author: Eirik Reksten

The important observations are that both the
cop and robber have constant speed along both
dimensions and that during a collision they’ll
overlap in both dimensions as well. If you know
the time interval the sprites overlap in each
dimension, you can take the intersection of these.
The answer is the start point of this intersection
interval.

Calculating the time interval of overlap
in one dimension is only a matter of simple
calculation and comparison.

4

Problem D

Balancing Weights (Easy)

Problem author: Eirik Reksten

The important realization in this problem
is that since you only need the sign of
the answer (-, + or 0), and the moment
of inertia always will be positive, all that
matters is the sum of the torques applied
from each weight. Moreover, as all masses
are the same, you simply need to add all
distances in order to find this sign. If the
sum of distances is less than zero print
Left, if its more than zero print Right, or
print Equilibrium if it is exactly zero.

5

Problem E

Ambulance Antics

Problem author: Ruben Spaans

Brute force is needed to solve this problem,
every combination must be examined. For
each trip the ambulance makes, every
combination of picking up 1, 2 or 3 patients
must be explored.

Standard brute force will time out. In
order to get the algorithm fast enough, dy-
namic programming can be used. The sub-
problem is a bitmask over all intersections
(except the hospital), where bit i is set if
the patient at intersection i hasn’t been
picked up. The asymptotic runtime of this
algorithm is O(2n · n2).

One more optimization should be required in order to pass. Always pick up the lower-
numbered untaken patient whenever the ambulance is empty. This will reduce the state
space significantly.

In addition, as a first step, one should find the shortest paths between each pair of
nodes in the graph, since they will be used throughout the algorithm above. Floyd-
Warshall is fine for this step.

6

Problem F

Nurikabe

Problem author: Ruben Spaans

This is a pretty straightforward problem to solve,
one merely has to check if all the rules are
followed for a given board. The following is one
way to do it:

First, loop over every 2 × 2 box in the grid
and check if there is one that contains only water
cells. If it does, we know that the board is not
valid.

Then, pick an arbitrary water cell and do
a breadth-first search through all neighbouring
water cells. If there exist any water cells on the
board after this search, there exist disconnected
water cells and the board is not valid.

At last, run breadth-first searches from every
cell containing a number. If the number of cells reachable from the numbered cell differs
from the given number, or more than more numbered cell was found on the same island,
the board is not valid. Finally, if there are island cells left after doing the breadth-first
searches, the board is not valid since each island must contain a number.

If all of the checks passed, we have a valid board.

7

Problem G

Cookie Monster (Easy)

Problem author: Eirik Reksten

This was probably the easiest problem in the set,
as it’s simply asking for the answer to dN/Ce.

As the constraints were pretty kind as well,
it suffices to convert to a floating-point number
and use the internal ceil() of the programming
language

Some simple Java solutions:

System.out.println((N+C-1)/C)

System.out.println(N/C+(N%C==0?0:1));

System.out.println(Math.round(Math.ceil(N/C)))

8

Problem H

Typing Monkey

Problem author: Ruben Spaans

The problem can be viewed as a markov chain,
since the probability distribution for the next
state is only dependent on the current state. A
state is defined as a pair of indices (a, b) in the
two given strings P and Q, where a means that
the last a characters typed by the monkey is
the same as the prefix of the first string, and
similarly for b and the second string. There are
a maximum of n = |P |+ |Q|+ 1 states.

We can create a transition matrix P of size
n×n, where Pij is the probability of moving to state j, given that we are currently in state
i. We want to define the states (|P |, ·) and (·, |Q|) such that we stay in these states with
probability 1. It can be shown that P 2 is a transition matrix for moving from one state
to another in two time steps. This can be generalized and hence we need to determine

lim
n→∞

P n.

In order to approximate P∞, we can take P to a huge power using fast matrix
exponential: Square the matrix a lot of times. It turns out that P 250

is sufficient, which
can be calculated by repeatedly squaring P 50 times. When we have an approximation of
P∞, we can simply read off the desired probabilities p and q, the probabilities of typing
the first word and the second word, given that we start in state (0, 0). The answer is p,
but since we might still have non-zero probabilities of not having found a word yet, we
calculate the answer using p

p+q
.

There is another way of solving this problem which is capable of solving test cases
with larger strings. Using generating functions one can set up infinite sequences of
typing sequences leading to sequences ending in the desired words. By manipulating the
expressions representing these sequences, one eventually arives at a simple sum formula.
Interested readers may consult the judge solution, or Concrete Mathematics (Graham,
Knuth, Patashnik) for a derivation of this formula for an alphabet with two letters with
equal probability.

It is possible to set up the relations between the states as a system of linear equations.
However, Gaussian elimination with double precision does not give sufficient numerical
stability to solve this problem. Implementing Gaussian elimination with fractions where
the numerator and denumerator are arbitrarily sized integers will work.

9

Problem I

The Diligent Cryptographer

Problem author: Tor Gunnar Houeland

Any cryptographic key is valid for the new system, so the task in this
problem is to determine whether the input is valid for the old system,
and output new or unknown accordingly.

Create a boolean array (or use a bitmask) to store whether a letter
has already been used or not, and read through the input one letter
at a time. If a repeated letter is found, check whether the previous
input was a valid permutation (i.e. the N previously read letters are
the letters from A to the Nth letter). If it is valid, check whether the
key is a repetition of the initial permutation by iterating through the
key and comparing each letter to the same index modulo N .

The key is also valid if there are no repeated letters.

10

Problem J

Combat Odds

Problem author: Eirik Reksten

The intended solution for this problem is using
dynamic programming. Lets rephrase the origi-
nal question to

What is the probability of observ-
ing a sequence of L losses in a se-
quence of n + k combats, where the
k first combats result losses?

We can define the function P (i, j) to be this
probability for i + j combats starting with j
losses. We know that the next combat will
result in a win with probability p or a loss with
probability 1−p. A win will take us to the state
i − 1, 0, while a loss will take us to the state
i − 1, j + 1. This allows us to formulate the
following recursive function:

Pi,j = p× Pi−1,0 + (1− p)× Pi−1,j+1

We also formulate the following terminating
equations:

Pi,L = 1.0
Pi,j = 0.0 if i + j < L

Using these equations, we can solve the problem using memoization or dynamic
programming.

11

