
IDI Open
Programming Contest

April 17th, 2010

Solution sketches

A Soundex

B Sheep Frenzy

C LOL (Easy)

D Treasure Hunt

E Cross Country Race

F Beads

G Sleeping at Work

H Is it a Number (Easy)

I Proud Penguin

J Travelling Tom



Problem A

Soundex

Problem author: Ruben Spaans

The näıve solution of generating all 261000 strings and
testing if the string has the same Soundex code will
naturally not run within the time limit.

The trick is to observe that the search space has
overlapping subproblems and optimal substructure, and
hence it can be solved using dynamic programming. The
subproblem consists of the following information: the
number of characters processed so far, how many characters
in the Soundex code we have matched so far, and whether
the last character was encoded into a digit or was ignored
(due to being a vowel).

This can for example be implemented as backtracking with memoization. For each
state, try all combinations of choosing the next letter, and call the backtracking function
recursively for the new subproblem.

2



Problem B

Sheep Frenzy

Problem author: Eirik Reksten

This problem looks like a standard AI search problem, as
we need to find the optimal way for Ulgr to move around the
map eating sheep. Running a breadth-first search through
all states (location and selection of eaten sheep) times out
(unless it runs out of memory first), however, as there could
be a total of 50× 50× 216 = 163, 840, 000 different states in
such an approach. Instead, we need to simplify the problem.

One way to do this is to note that when moving from
one sheep to another, you’ll always want to take the shortest
route. Since it also never will do you any good to move to
other locations on the map than this, the distances between
the sheep (and Ulgrs starting location) is everything we
need. A good idea at this point is to give each of the interesting locations a unique
identifier (i.e. a number).

In order to find the distances between all these, we can simply run a BFS from each
of the locations, and note the distance to each of the others. If the BFS can’t reach all
interesting locations, we return Impossible. These 17 BFS’es has 50 × 50 = 2500 states
each, and you’ll therefore visit a total of 42, 500 states.

After having found all these distances, you are left with the Travelling Salesperson
Problem on a complete graph, with the extra simplification that you don’t have to return
home after visiting all the sheep. Trying all possible permutations of sheep leaves us with
16! = 20, 922, 789, 888, 000 permutations, so this is obviously out of the question. Once
again, we need to discover a slight simplification. We note that the whole state can be
defined as what sheep we already have eaten and which one we ate last (our position).
In addition one move consists of moving to another sheep and eating it. This is a much
simpler graph with a total of 17 × 216 = 1, 114, 112 states. It can easily be solved with
Dijkstra, or even a mere recursion with memoization.

3



Problem C

Laughing out Loud

Problem author: Ruben Spaans

The easiest way to solve this problem is probably to
check if each string contains certain patterns. For each
pattern, check if it occurs as a substring in the string.
Check all patterns and the answer is the lowest number
of edit operations across all matching patterns. If none of
the patterns exist, the answer is 3.

• lol: If this substring occurs, we don’t have to do
anything - the answer is 0.

• ll, lo, ol: From each one of these configurations it is
possible to add one letter to obtain lol, so the answer
is 1.

• l?l: This pattern was not in the examples, so it is
probably the easiest one to miss. Replace the middle
character with o, so the answer is 1. The easiest way
to implement this check in Java is to use a regular
expression.

• o, l: Add the two missing letters, which is two
operations.

• If the string does not contain any l’s or s, 3 operations
are needed.

Solutions that try all combinations of one and two edits are also permitted. The time
limit was pretty generous, so such a solution didn’t have to be efficient. There is no
need to check all combinations of three edits, since we can always just write lol in three
operations.

4



Problem D

Treasure Hunt

Problem author: Eirik Reksten

The solution for this problem is based on the observation that an optimal fence/line can
always lie infinitely close to a mine point. To see this, assume that you have an optimal
line. If this line does not lie next to a mine, you can move the line directly towards the
closest mine, while still not losing any treasures on the other side. At the same time, the
line can lie infinitely close to a treasure on the other side (using the same reasoning as
with the mine).

Knowing this, we won’t need to test any other lines than those that pass through a
mine and a treasure (O(N ∗M) lines). Taking care to count treasures that lie on the line
correctly (the line will after all have to be slightly rotated to adhere to the rules), the
solution can then be found in O(N ∗N ∗ (N + M)) time. This will time out, however, as
N ∗M ∗ (N + M) can be as high as 6750000000.

Another important observation is that only the mines that are part of the convex hull
of the mine points are interesting. Lines through any other mine point will have mines
on both sides. This alone does not improve asymptotic running time, but it still forms
the basis for the intended solution.

The intended solution lets the line ”roll around” the convex hull of the mines, keeping
track of which treasures lie on the outside and inside of the line. It starts with a line
through two adjacent mines in the hull, and divides the treasures into two lists (inside
and outside). These lists are then sorted according to the angle compared to the last of
the two mine points (the pivot). It then iterates through these lists, moving the next
(angle- wise) point to the other list (as when the line rotates past this point).

When the line reaches the next mine in the hull, this mine is set as pivot, the lists
are resorted and the process repeated. The process ends when reaching the first pivot
again. The answer will be the largest size of the list of outside treasures throughout the
whole algorithm. An important consideration is dealing with collinear points. Always
move these from the outside list to the inside one before the other way around (otherwise
you’re allowing mines to lie on the line).

As for running time, each treasure will at most be moved between the inside and
outside lists two times, yielding a run time of O(N) for these operations. A dominating
factor is then the sorting of the lists. They will be sorted at most O(M) times, since the
amount of mines in the convex hull can be as many as M . The size of the lists will never
be more than N , so an upper bound is described by O(M ∗N ∗ log(N)). M ∗N ∗ log(N)
is less than 71 million, and this will run in time.

For those who like challenges, you can try finding a solution with running time
O(M ∗ log(M) + M ∗N + N ∗ log(N)) or better.

5



Problem E

Cross Country

Problem author: Eirik Reksten

Due to the relatively low amount of racers in this problem,
it can be solved using a simple simulation approach (at
least one racer will always be eliminated). For each race,
calculate whether or not each racer will catch up with the
queue in front of him. If he does, he should do another race.
If not, he should not.

To check whether a racer catches up with one starting in
front of him during the race, we can use the s = v∗t equation
mentioned in the notes section of the problem description.
Racer 2 will catch up with racer 1 if and only if t2 + d ≤ t1,
where ti is the time racer i spends on the race, and d is
the delay from racer 1 starts until racer 2 starts. Combining with the beforementioned
equation, we get d ∗ v1 ∗ v2 ≤ s ∗ (v2 − v1).

Using this equation, we can simulate race by race, racer by racer, until everyone has
finished, and print the output.

6



Problem F

Beads

Problem author: Børge Nordli and Eirik Reksten

If you try to solve this by storing a single number for each
box, and iterating through them for every single query, you
could potentially end up with 30000 queries on up to 100000
boxes. This would require 3000000000 = 3 · 109 operations,
and break the time limit. We need a data structure to
facilitate faster processing of the queries, and still not lose
too much on the insertions.

One possibility is to store the structure of boxes in a tree,
storing a number in each node. The leaf nodes represent the
single boxes, while the internal nodes represent sequences of
boxes. The number in an internal node is the sum of the numbers in all leaf nodes in its
sub tree.

To put beads in a box, you traverse from the root of the tree to the correct leaf, adding
the amount of beads in every node along the way. This gives an asymptotic running time
of O(log(N)) for this operation, where N is the amount of boxes.

For queries, these also start in the root. If the sequence for the node you are at is
entirely contained within the query sequence, return its value. If the sequences do not
intersect at all, return 0. Otherwise, return the sum of the recursive call for each of the
two subtrees. This method will potentially iterate down to the leaf on both ends of the
query sequence. For each end, you will visit at most 2 ∗ log(N) nodes, so the asymptotic
running time for this operation is O(log(N)) as well.

A structure such as described above is also called a Segment Tree. Another, more
advanced, solution is using a Fenwick Tree (also called a Binary Indexed Tree). There are
judge solutions using both variants.

7



Problem G

Sleeping at Work

Problem author: Ruben Spaans

This problem can be solved with dynamic programming.
The subproblem consists of the number of minutes elapsed
at work so far, the total number of minutes slept so far, and
the number of minutes slept in the current streak.

At each subproblem, there are two decisions: Sleep
during the next minute, or stay awake (thus resetting the
current sleep streak). Both decisions aren’t necessarily
always possible; it is not possible to sleep if the required
amount has been reached, or the current streak is the
maximal before the boss will react.

One way to implement the solution is to use for loops
to traverse through every state, perform each decision and
update the energy level of the next state if it is higher than
the previous value.

The runtime of the solution is O(NMR), where N is the number of minutes in a
workday, M is the required amount of sleep in minutes, and R is the longest nap you can
take without getting caught by the boss. We can get away with O(MR) memory usage
by observing that for any given minute m we’re processing, we only need to keep all states
for minutes m and m + 1 in the memory at the same time.

A faster solution is possible by defining a state as the number of minutes spent at
work so far, and the number of minutes slept so far. For each state, there are now R + 1
decisions: Don’t sleep at all, or sleep for 1, 2, 3, . . . , R minutes. Both solutions were
acceptable for this problem.

8



Problem H

Is it a Number? (Easy)

Problem author: Eirik Reksten

This problem should be straightforward. Read the case
input (by line), and trim() the resulting string. Verify that
the remaining text consists of one or more digits (using a
regular expression or simple iteration). If it is invalid, print
invalid input. Otherwise, remove all leading zeros and
print the number.

Care must be taken if the input is actually zero, in which
case that last zero should not be removed before printing
the output.

9



Problem I

Proud Penguin

Problem author: Eirik Reksten

Consider the following easier version of the problem:

Given a maximum climb height, how much
water do we need to obtain this height?

This problem can be solved greedily in O(N) by iterating
through the track and filling in water after every hilltop
(simply store the water level for each point along the track).
Be sure to iterate in both directions, so that you take care
of hills on both sides of the ponds. To calculate the amount of water used, just iterate on
last time and sum the amounts for every segment.

Returning to the original problem, this can then be reduced to a simple search for the
lowest climb height where we have enough water. Using the previously explained as a
check, we can do this effectively using a simple binary search.

10



Problem J

Travelling Tom

Problem author: Eirik Reksten

As there are no restrictions on how many times a city can be
visited on the path, this problem is really a series of shortest
path searches. For every pair of cities you want to travel
between, you need to find the cheapest route between these
cities.

The easiest way of doing this is using a single application
of Floyd-Warshall’s shortest path algorithm, which finds the
cheapest route between all pairs of cities. Then just iterate
the travel route, and add the costs to find the answer. The
running time of Floyd-Warshall is O(N3).

Another solution is to use a series of N one-to-all
shortest path searches (ie. Dijkstra). As Dijkstra is O(N2)
worst case, this approach will run in O(N3) as well.

11


