
IDI Open
Programming Contest

April 21st, 2012

Problem Set

A Boss Rush

B Decode the Message (Easy)

C Troublesome Tools

D Civilization (Easy)

E Inverse Divisor Sums

F Longest Common Path

G Birthday Party

H Holey Road

I Candy Store

J Rotating Penguin Maze

Jury and Problem Writers

Ruben Spaans, NTNU

Jon Marius Venstad, NTNU

Geir-Arne Fuglstad, NTNU

Magnus Lie Hetland, NTNU



2



Tips
• Tear the problem set apart and share the problems among you.

• Problems are not ordered by difficulty.

• Try solving the easy problems first. Two problems in this set are tagged with
“(Easy)” to help point you in the right direction.

• If your solution fails on a problem, you can print your program and debug it on
paper while you let someone else work on a different problem on the computer.

• If you need help, contact the judges.

Rules
• Each team consists of one to three contestants.

• One computer is used per team.

• You may not cooperate with persons not on your team.

• You may print your programs on paper to debug them.

• What you may bring to the contest:

– Any written material (Books, manuals, handwritten notes, printed notes, etc).

– Pens, pencils, blank paper, stapler and other useful non-electronic office
equipment.

– NO material in electronic form (CDs, USB pen and so on).

– NO electronic devices (PDAs and so on).

• The only electronic content you may consult during the content is that specified by
the organiser (see the web-page). You may not copy source code from web pages,
etc.

• Your programs should read from standard in and write to standard out. Writing to
standard error will result in a failed submission. C programs should return 0 from
main().

• Your program may use at most 100MB of memory.

• Your programs may not:

– access the network,

– read or write files on the system,

– talk to other processes,

– fork,

– or similar stuff.

– If you try, your program will hang or crash. If it hangs, it will take a couple
of minutes before others will be able to run their programs. And please do
not crack somebody who uses their spare time trying to give you something
valuable.

• Show common sense and good sportsmanship.

3



4



Problem A

Boss Rush

You are playing the fantastic new game Mega Man XIII-2.
Unfortunately, the boss fights in the game are extremely
hard. You have access to several weapons, like the
PowerLaser, the EvilRocket and the PsychTerror. Each
weapon belongs to one of three categories: laser, rocket
and psiotic. In order to defeat a boss you must use three
weapons, one from each category. A given boss is only
vulnerable against a subset of the weapons, but you have
studied the bosses in advance and know which weapons you
can use against each of them.

You start the game with two of every available weapon. As the game progresses, you
encounter every boss in a predefined order. For each boss fight, you choose one weapon
from each category, and after the fight those three weapons are worn out and cannot be
used again.

In order to progress as far as possible into the game, you need to select your weapons
carefully. You don’t want to lose against the last boss because you already spent the
needed weapons in the beginning of the game! However, you are overwhelmed by the
number of ways you can pick weapons against the bosses, so you have decided to write a
computer program that determines the maximum number of bosses you can defeat if you
pick the weapons for each boss fight optimally.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
test case begins with a line containing a single integer N , the number of bosses in the play
session. Then N groups of 3 lines follow, a total of 3N lines. The i-th group of 3 lines
describes which weapons can be used to defeat boss i from the categories laser, rocket
and psiotic, respectively (one line for each category). These lines start with an integer
Wij, the number of weapons from the j-th category that can be used to defeat boss i.
The remainder of a line contains Wij space-separated strings containing the names of the
weapons.

Output specifications

For each test case, output on a single line M , the maximal number of bosses you can
beat.

5



Notes and Constraints

• 0 < T ≤ 100
• 0 < N ≤ 100
• 0 < Wij ≤ 10
• All string lengths are between 1 and 32, inclusive.
• A string only consists of upper- and lowercase letters from a to z.

Sample input

1

4

3 UltraLaser TurboLaser PowerLaser

2 EvilRocket ShatterRocket

3 PsychTerror Wisp Shutdown

2 UltraLaser TurboLaser

2 ShatterRocket PropelledCannon

1 Wisp

2 UltraLaser TurboLaser

2 PropelledCannon EvilRocket

1 Wisp

3 UltraLaser TurboLaser PowerLaser

2 EvilRocket ShatterRocket

1 Wisp

Output for sample input

3

6



Problem B

Decode the Message (Easy)

Two of your friends Alex and Adam have developed a
secret system for sending messages to each other. The only
problem is that the system has turned out to be too hard
to do by hand. Therefore, Alex has asked for your help
to write a program to decode the secret messages. After
making you swear never to reveal the system, he explains
that the coded message consists of one or more words, only
consisting of lower case characters a–z, seperated by spaces.
Each word corresponds to one character, a–z or space, and
is found by adding the value of each character in the word
and taking the remainder when dividing by 27. a is assigned
the value 0, b is assigned the value 1 and so on up to z which
is assigned the value 25. Based on the calculated remainder
the values 0–25 corresponds to a–z as before, and the value
26 corresponds to a space.

Help your friend write a program which takes a coded message and outputs the decoded
message.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
test case consists of a single line containing a secret message. The secret message contains
only lower case characters and spaces, and there are only spaces between words and never
two or more consecutive spaces.

Output specifications

For each test case, output the corresponding decoded message.

Notes and Constraints

• 0 < T ≤ 100
• Each secret message contains no more than 1000 characters

Sample input

2

a b c d e f

it is late o green wrong whole

Output for sample input

abcdef

a horse

7



8



Problem C

Troublesome Tools

The gentleman Inco Gnito is attempting to infiltrate the
Entership Starprise, and has been tasked with assisting the
chief engineer Forgie with repairs. Forgie has brought with
him some tools, and will repeatedly ask Inco for a subset of
these. Only when Inco has placed exactly the correct tools
in front of Forgie will he take them, utilise them and return
them to Inco. This process will repeat itself until the repairs
are complete. This sounds simple enough, but the problem is that Inco has no idea what
any of the tools are called! Luckily Inco is a quick study, and he is thus able to use all
the information of his previous errors and successes when trying to find a new subset of
tools. On the other hand, if he is very unlucky, he could be stuck with Forgie for a very
very long time, and possibly be revealed as a spy.

Calculate how many different subsets of tools Inco will have to offer Forgie in total,
assuming he has the least possible amount of luck during this assignment.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
test case begins with a line containing two integers N , the number of tools, and K, the
number of different subsets Forgie will ask for. The next line contains N space-separated
tool names consisting of up to 25 lowercase letters ’a’-’z’ and ’-’. Then follow K lines
containing an integer M and then the names of M different tools as above. Tool names
are unique within a test case, and the tools for different test cases are not related.

Output specifications

For each test case, output the maximal number of subsets Inco might have to offer Forgie,
assuming he learns all he can during the assignment. The answer can be a very large
number, so output the result modulo 231 − 1.

Notes and Constraints

• 0 < T ≤ 100
• 0 < N ≤ 1000
• 0 < K ≤ 100
• 0 < M ≤ N

9



Sample input

2

3 3

tricorder quantum-flux-regulator hyperspanner

1 tricorder

1 quantum-flux-regulator

1 hyperspanner

5 4

pulse-drill phase-coil-resonator duct-tape crowbar optronic-coupler

2 phase-coil-resonator optronic-coupler

2 pulse-drill optronic-coupler

1 crowbar

1 duct-tape

Output for sample input

6

19

10



Problem D

Civilization (Easy)

Emperor Montezuma of the ancient civilization of the
Aztecs has a hard time planning the productivity of
his capital city. The city is divided into square-shaped
regions of the same size. Each region has three important
properties: Workforce (number of people able to work),
income (the amount of money Montezuma can earn from
this region, given in Quetzal, the Aztec currency) and the
number of farms. A region needs an administrator in order
to contribute to the city. Otherwise, the region is self-
sufficient and not officially a part of the city (and hence,
Montezuma doesn’t earn taxes, cannot utilize the work force
and cannot access food produced from the region’s farms).

Montezuma wants to make sure that his capital city is sufficiently prosperous, and he
wants to achieve this prosperity by using as few administrators as possible. The capital
city is prosperous if the sums of the workforces, income and farms for all administered
regions exceed or are equal to the given values in each category.

Alas, Montezuma was born rather early and didn’t have access to computers. However,
you have read about Montezuma’s exploits in the Civilopedia of the latest installment of
the computer game Civilization. You found this scenario interesting enough that you
have decided to write a computer program that calculates the fewest number of regions
Montezuma would need to administer in order to have a city which is prosperous with
regard to workforce, taxes and farms.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
test case begins with a line containing a single integer N , the number of regions near the
capital city. The next line contains three integers W,C, F , representing the number of
workers, tax income and number of farms which is needed for the city to be considered
prosperous. The next N lines contains three integers wi, ci, fi, the number of workers, the
tax income and the number of farms that region i offers, respectively.

Output specifications

For each test case, output the minimal number of regions that need to be administered.
If it is impossible for the city to be prosperous, output “game over” instead (without
quotes).

11



Notes and Constraints

• 0 < T ≤ 100
• 0 < N ≤ 18
• 0 < W,C, F ≤ 1000
• 0 < wi, ci, fi ≤ 1000

Sample input

2

3

50 50 50

10 20 30

40 30 22

10 10 33

2

10 20 30

5 5 5

200 10 20

Output for sample input

2

game over

12



Problem E

Inverse Divisor Sums

Your friend Odd Even is obsessed with number theory. He
likes to learn new operations to perform on numbers, and to
spend endless hours applying his newly acquired knowledge
to numbers. For instance, last year he learned about Euler’s
totient function φ(n), which counts the number of positive
integers less than or equal to n that are relatively prime to
n. Shortly after that, he went on a spree and calculated
φ(n) for all integers n from 1 up to one million by hand.

Recently, he learned that the sum of all divisors of a
number N could be calculated by the following formula:

sum of divisors(N) =
r∏

i=1

p
(ai+1)
i − 1

pi − 1
.

Here, pai1 p
a2
2 . . . parr is the factorization of N into prime factors where each pi is different

and ai is the maximum power of pi such that paii that divides N .
Odd Even wants to calculate the function in reverse; given a positive integer N he

wants to find all positive integers M having N as its sum of divisors, and he wants them
written out nicely in increasing order. You think this will take too long, so you have
decided to intervene and offer computer assistance.

Write a computer program that does the following: given a positive integer N , output
a list of all the integers M having N as its sum of divisors, in increasing order, or inform
Odd Even that no such numbers exists.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. The T
following lines each contain a single integer N .

Output specifications

For each test case, output all such numbers on one line, in increasing order, with a single
space between each number. If no numbers exist, output “none!” (without quotes).

Notes and Constraints

• 0 < N ≤ 109

• The output can be large. For Java, it is advisable to buffer the output using
StringBuilder.

13



Sample input

4

7

2

126

1524

Output for sample input

4

none!

68 82

704 1083 1523

14



Problem F

Longest Common Path

Per and P̊al are friends, and like to hang out together. They
are also very impatient, so they always take the shortest
possible way when they need to go somewhere.

It’s the end of the school day, and they need to go home.
Naturally, they want to arrive at home as early as possible.
They also want to maximize the time they walk together
while walking towards their homes. You have been asked to
write a computer program that calculates the maximal time
they can walk together. Their neighbourhood is modelled as
a graph where intersections are nodes and roads are edges.
The roads are bidirectional, and it takes the same time to traverse a road in both
directions. All important destinations happen to be located at an intersection. Also,
the school and the two homes are never located at the same intersection. There exists a
path between every pair of intersections.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. The
next line contains two integers N and M , the number of intersections and the number of
bidirectional roads in the city, respectively. The following line contains three integers S, P
and Q, indicating the position of the school, Per’s home and P̊al’s home, respectively. The
next M lines contain three integers ai, bi and ti, indicating that there is a bidirectional
road between intersections ai and bi which takes ci minutes to traverse. All intersections
are numbered from 0 to N − 1, inclusive.

Output specifications

For each test case, output the length of the longest distance Per and P̊al can walk together
while still arriving at their own homes as fast as possible.

Notes and Constraints

• 0 < T ≤ 100
• 3 ≤ N ≤ 2000

• N − 1 ≤M ≤ min
(

N(N−1)
2

, 10000
)

• 0 ≤ ai < bi < N
• 0 < ci ≤ 1000
• 0 ≤ S, P,Q, ai, bi < N

15



Sample input

2

4 5

0 2 3

0 1 100

1 2 50

1 3 40

0 2 500

0 3 500

4 5

0 2 3

0 1 100

1 2 50

1 3 40

0 2 10

0 3 10

Output for sample input

100

0

16



Problem G

Birthday Party

N persons have been invited to a somewhat special birthday
party. Each person brings one present, but the recipent
of each present is determined randomly. A person never
receives his own present, but all other persons are equally
likely recipients. What is the probability that one can find
k persons at the party such that person 1 gives his present
to person 2, person 2 gives his present to person 3 and so
on to person k which gives his present to person 1?

Input specifications

The first line of the input consists of a single integer T , the
number of test cases. Each test case consists of two integers
N and k.

Output specifications

For each test case, output the probability with an accuracy of at least 10−6.

Notes and Constraints

• 0 < T ≤ 30
• 2 ≤ N ≤ 10000000
• 2 ≤ k ≤ N

Sample input

4

2 2

3 2

3 3

10 3

Output for sample input

1.000000000

0.750000000

0.250000000

0.313469843

17



18



Problem H

Holey Road

You are manouvering a tiny remote-controlled car along a
road in very bad condition; the road is full of holes. The car
is unable to drive over the holes, since it would plunge into
the hole and become damaged beyond repair. In addition,
driving off the road will cause the car to be forever lost in
the tall grass surrounding it.

The car is so small that it can be considered as a point
with no spatial extension. The road is W meters wide and
L meters long, and it runs parallel to the y-axis. Your car
starts at

(
W
2
, 0
)

and your destination is
(
W
2
, L
)
. All of the

holes happen to be perfectly circle-shaped, and none of them
intersect or touch other holes or the edges of the road.

You want to take the shortest possible path to the
destination. Write a program that calculates the length
of such a path.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
test case begins with a line containing three integers N,W,L, the number of holes, and
the width and the length of the road, respectively. Then follow N lines each containing
three integers xi, yi, ri representing a hole with center xi, yi and radius ri.

Output specifications

For each test case, output the length of the shortest possible path from the starting
position to the final position that avoids holes. An error of up to 10−6 will be accepted
in the output.

Notes and Constraints

• 0 < T ≤ 100
• 0 ≤ N ≤ 100
• 0 < L ≤ 1000
• 0 < W ≤ 100
• ri < xi < W − ri
• ri < yi < L− ri
• 0 < ri < min

(
bW

2
c, bL

2
c
)

19



Sample input

3

1 50 1000

20 500 5

1 50 1000

25 500 5

3 100 1000

50 50 25

25 150 24

75 150 24

Output for sample input

1000.00000000000

1000.05000041668

1009.34797846036

20



Problem I

Candy Store

Little Anne loves candy and she wants to buy candy at
the local candy store. Fortunately, she also happens to be
extremely rich, which enables her to buy all the candy she
could ever want. She wants to buy candy for at least C
kroner, and she also wants to buy at most one of each type.

There are many ways to buy candy for at least C kroner,
so she wants to consider the possibilities before buying.
Since her parents think she is too young to use a computer,
she has asked you to write a program that calculates the
number of possibilities.

Anne doesn’t like large numbers like 1,000,000,007, so
you instead calculate the number of possibilities modulo 65537, a less intimidating number.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
test case begins with a line containing two integers N and C, the number of available
candy types and the least amount of money Anne wants to spend. The next line contains
N space-separated integers ai, the cost of candy type i in kroner.

Output specifications

For each test case, output on its own line the number of ways Anne can buy candy for at
least C kroner, modulo 65537.

Notes and Constraints

• 0 < T ≤ 100
• 0 < N ≤ 200
• 0 < C ≤ 10000
• 0 < ai ≤ 200

Sample input

2

5 10

5 6 7 8 9

10 100

10 10 10 10 10 10 10 10 11 9

Output for sample input

26

1

21



22



Problem J

Rotating Penguin Maze

Sometimes I just need to manouver a baby penguin as
quickly as possible through a maze, so it can find the fish
someone has hidden inside. I have taught the penguin to be
proficient with a compass, and can thus give it instructions
’E’, ’N’, ’W’ and ’S’. The penguin’s maze also has an extra
feature: at some of the tiles are pressure plates that cause
a 90 degree counter-clockwise rotation of the whole iceberg
on which the maze is located, when the penguin steps on
one of them. The penguin is oblivious to this, as it rotates along with the iceberg. The
compass needle, however, doesn’t rotate along with the iceberg, and thus I have to modify
my instructions whevenever such a pressure plate is activated. In the long run, I think
this will give me a headache, so please, can you write a program to help me out?

Fortunately the maze always has exactly one path from the starting tile to the goal
tile. Between each pair of tiles there exists exactly one path, and the starting tile will
never contain a pressure plate.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
test case begins with a line containing two integers X, Y - the size of the maze in the X
and Y directions, and another line containing 4 integers px, py, gx, gy - the penguin’s
starting coordinates and the goal tile coordinates. Then follow Y lines with X characters
each, where each character represents a single tile of the labyrinth as a base-32 number
(0, 1, . . . , 9,A,B, . . . ,V). This number is the sum of the features the tile contains: If the
tile has an east-going passage, 1 is added to the sum. If the tile has a north-going passage,
2 is added. For west-going passages 4 is added, and for south-going ones 8. In addition,
if the tile contains a pressure plate, 16 (or G) is added to the sum. Thus e.g. a tile value
of H (or 17) means the tile has an east-going passage and a pressure plate.

Output specifications

For each test case, output a single line with the compass instructions you will have to give
your penguin to guide it along the shortest path to the tile where the fish can be found,
assuming each instruction makes it move exactly one tile in the given direction.

23



Notes and Constraints

• 0 < T ≤ 100
• 0 < X ≤ 500
• 0 < Y ≤ 500
• 0 ≤ px, gx < X
• 0 ≤ py, gy < Y

Sample input

1

2 3

0 0 1 2

9C

AQ

22

Output for sample input

ESE

24


