
IDI Open
Programming Contest

April 20th, 2013

Problem Set

A Angry Grammar Nazi

B Neurotic Network

C Special Services

D Negative People in Da House (Easy)

E Ruben Spawns (Easy)

F Kings on a Chessboard

G Traveling Cellsperson

H Dimensions

I Space Travel

J C.S.I.: P15

Jury and Problem Writers

Christian Neverdal Jonassen, NTNU

Børge Nordli, Microsoft

Eirik Reksten, Steria

Ruben Spaans, NTNU

Jon Marius Venstad, NTNU



2



Tips
• Tear the problem set apart and share the problems among you.

• Problems are not ordered by difficulty.

• Try solving the easy problems first. Two problems in this set are tagged with
“(Easy)” to help point you in the right direction.

• If your solution fails on a problem, you can print your program and debug it on
paper while you let someone else work on a different problem on the computer.

• If you need help, contact the judges.

Rules
• Each team consists of one to three contestants.

• One computer is used per team.

• You may not cooperate with persons not on your team.

• You may print your programs on paper to debug them.

• What you may bring to the contest:

– Any written material (Books, manuals, handwritten notes, printed notes, etc).

– Pens, pencils, blank paper, stapler and other useful non-electronic office
equipment.

– NO material in electronic form (CDs, USB pen and so on).

– NO electronic devices (PDAs and so on).

• The only electronic content you may consult during the content is that specified by
the organiser (see the web-page). You may not copy source code from web pages,
etc.

• Your programs should read from standard in and write to standard out. Writing to
standard error will result in a failed submission. C programs should return 0 from
main().

• Your program may use at most 100MB of memory.

• Your programs may not:

– access the network,

– read or write files on the system,

– talk to other processes,

– fork,

– or similar stuff.

– If you try, your program will hang or crash. If it hangs, it will take a couple of
minutes before others will be able to run their programs. So please make an
effort to not not crack/break what we have spent our spare time preparing for
you.

• Show common sense and good sportsmanship.

3



4



Problem A

Angry Grammar Nazi

Your friend is what we can call a grammar nazi. He spends a lot of
time on popular internet discussion forums. Unfortunately, he has
a bad temper and loses his mind whenever someone incorrigibly
befouls the English language, with unrelenting violations of
grammatical and ortographic rules.

In order to avoid smashed keyboards, monitors and coffee-cup
holders, you advice your friend to momentarily stop reading and
count to ten each time he becomes angry, instead of smashing
something.

Your friend becomes angry whenever he reads the following
words or sequences of words:

• “u”, “ur” instead or “you”, “your”.

• “would of”, “should of” instead of “would have”, “should have”.

• “lol” instead of “haha”. In fact he becomes angry even when a word contains “lol”
as a substring.

You decide to write a computer program that reads sentences one by one, and for
each sentence calculates how many times your friend will have uttered a number after
reading said sentence. Your friend does not read out loud, so numbers that are part of
the input-sentences should not be counted.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. The
following T lines each contain one sentence; that is, one or more words separated by space.

Output specifications

For each test case, output how many times your friend have said a number after reading
the sentence.

Notes and Constraints

• 0 < T ≤ 50
• A sentence consists of at most 100 characters, including spaces.
• A word consists only of lower case letters between a and z, inclusively.
• Two adjacent words are separated by exactly one space, and a sentence never has

leading or trailing spaces.

5



Sample input

4

u haz lolcats

my car is green

i have a lollipop

u should of lold

Output for sample input

20

0

10

30

6



Problem B

Neurotic Network

In this problem, a neural net is represented by a rooted tree
with weighted edges. The neural net processes information
by a cascade of signals that begins at the leaf nodes:
Each node in the tree computes an output value based
on its upstream neighbors, and passes this value on to its
downstream neighbor. The output value computed by a
node is the sum of the output of each of its upstream
neighbors multiplied by the weight of the edge from the
upstream neighbor to the node itself. A node with no
upstream neighbors (leaf nodes) always has 1 as output. All neural nets in this problem
have exactly one final output node (the root node).

Sometimes, a neural net can go haywire and become what is more commonly known
as a neurotic network. Consider this your chance to launch a second career in psychiatry.
The scenario is that someone just came in with a neurotic network in their head. What
this means is that if the output of their neural net is an even number, the person will freak
out and will set fire to a kitten. Therefore, it is of vital importance that you can know
ahead of time whether or not a given person is safe. If it is safe, print their neural output
modulo 1,000,000,007. If you wouldn’t trust the person to be around kittens who’re not
wrapped in fire retardant, print the string “FREAK OUT” (without the quotes).

Input specifications

The first line of input is T , the number of test cases. For each of the T cases, the first
line will be the integer N , the number of nodes in the tree. The next line contains N − 1
integers a1, a2, · · · , aN−1 where ai is the downstream neighbour of the node with ID i.
Then follows a line with N − 1 integers w1, w2, · · · , wN−1 where wi is the weight of the
neural connection going out from the node with ID i. Note that the node with ID 0 will
always be the output node.

Output specifications

Output “FREAK OUT” (without the quotes) if the final value of the neural net’s output
node is even. Otherwise, output the final value of the output node, modulo 1,000,000,007.

7



Notes and Constraints

• 0 < T ≤ 50
• 0 < N ≤ 10000
• 0 < wi ≤ 10
• 0 ≤ ai < N
• The graph is guaranteed to be a tree.
• This is an I/O-heavy problem. For Java programmers, this means that you should

use BufferedReader for input reading (not Scanner).

Sample input

4

1

4

0 0 2

7 7 1

4

0 0 2

6 7 2

11

0 1 2 3 4 5 6 7 8 9

9 9 9 9 9 9 9 9 9 3

Output for sample input

1

FREAK OUT

FREAK OUT

162261460

8



Problem C

Special Services

You’re assigned the job of making a booking system for
a special services company. This company conducts all
sorts of services, but you are told not to ask any questions.
There have been some developers before you that have tried
making this system, but sadly none of them are anywhere
to be found, so you can’t ask them for any help.

The system is receiving bookings (and cancellations) one
by one, and must immediately accept/reject the booking.
All bookings last for a whole day, and the part of the system
you’re making needs to keep track of a single day.

The company has a number of employees, each having
one or more qualifications. Each booking, in addition to
having been a given numeric identifier, demands a number of people (employees), each
having a specific qualification. One person can cover at most one demand from one
booking during the whole day. The director used Mario as an example; while Mario can
be both a plumber and an assassin, in a single day he can only do one of the jobs for one
booking (in this company).

A booking is accepted if and only if

• there are no active bookings with that specific identifier, and
• it is possible, using the given employees, to cover all the demands of the currently

active bookings as well as the new one.

A cancellation is accepted if and only if

• there is an active booking with that specific identifier.

Input specifications

The first line contains T , the number of test cases that follow. Each test case
starts with a line containing the numbers N and B, the number of employees and
bookings/cancellations in the test case.

Then there follow N lines, each specifying an employee. Each line consists of a number,
c, followed by c strings delimited by whitespace, giving the names of each qualification of
that particular employee.

Subsequently there follows B lines, each containing either a booking or a cancellation.
A booking starts with the word book. Then follows the numeric identifier I of that
booking, followed by the number d and then finally d strings delimited by whitespace.
This gives all qualification demands this booking has. A cancellation consists of a the word
cancel followed by a number referring to the identifier I of the booking to be cancelled.

9



Output specifications

For each booking/cancellation, output a single line of output. The line should consist of
the word Accepted if the booking/cancellation is accepted, or Rejected otherwise.

Notes and Constraints

• 0 < T ≤ 50
• 1 ≤ N ≤ 200
• 1 ≤ B ≤ 1000
• 1 ≤ c ≤ 16
• 0 ≤ d ≤ 16
• 0 ≤ I ≤ 1000
• Qualification names will be at most 10 characters long. There will be no more than

100 different qualifications shared among all the employees.
• An active booking is one that has been accepted, and not successfully cancelled.
• It is possible to make bookings reserving no people whatsoever. These bookings will

be handled by the company manager, and you should keep on asking no questions.
• This is an I/O-heavy problem. For Java programmers, this means that you should

use BufferedReader for input reading (not Scanner).

Sample input

2

1 1

1 slacker

book 6 1 worker

3 6

2 plumber nurse

2 nurse assassin

2 assassin plumber

cancel 1

book 1 2 plumber assassin

book 123 1 nurse

book 4 3 assassin nurse plumber

cancel 1

book 4 2 nurse assassin

Output for sample input

Rejected

Rejected

Accepted

Accepted

Rejected

Accepted

Accepted

10



Problem D

Negative People in Da House (Easy)

The following math joke is presented for your amusement:
Two mathematicians sit in a car outside a house. Two
people enter the house. Then, three people are observed
going out of the house. One of the mathematicians exclaim:
If one person is to enter now, the house will be empty!

Since you have very little sense of humor, you are to
write a program that will calculate the minimum number of
people there must have been there to begin with. In other
words, given a sequence of groups of people leaving and
entering the house, output the minimum number of people
there must have been before you started stalking. After
writing this program, your mathematician friend will leave
you, as well as their math department, to start a company
specializing in joke-telling and stalking.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
of the following T cases has two parts: First, a line containing a single integer M . Then
follows M lines with two integers P1 and P2 separated by a space, where the first one
contains the number of people entering the house, then the number of people leaving the
house. Note that these are two events: First, P1 people enter the house, then P2 people
leave the house.

Output specifications

Output the minimum number of people that would have to have been inside the house at
the beginning.

Notes and Constraints

• 0 < T ≤ 50
• 0 < M ≤ 100
• 0 ≤ P1, P2 ≤ 1000

11



Sample input

1

3

3 5

3 4

1 0

Output for sample input

3

12



Problem E

Ruben Spawns (Easy)

Being the head judge of a programming contest is no small
thing. As with everything good in life, there is that
inevitably long list of things that need to be done before
it can happen. Fortunately for Ruben, he has recently
acquired a machine that at the push of a button, can spawn
a small minion for him to do part of his work. He has also
hired an assistant to remind him to activate the machine.

There is one caveat with minions. If you have too many
of them, they might get lost. So, simply put, fewer is better.
After all, someone has to keep track of those minions. Each
minion spawned from the machine can work a set amount
of units, and then they are “spent” (there exists a recycling
machine, but it is hidden in a deep, dark forest somewhere).

The machine itself creates a given number of minions whose work capacities are
normally distributed with both µ and σ unknown. The number of minions the machine
can spawn in a given time interval is Poisson distributed with intensity λ, also unknown.

What we are interested in is knowing the minimum amount of times Ruben would
have to spawn a minion to be sure that all the work gets done. You are given a list of
how many work units each of the N minions can work for. The machine will break down
completely after having spawned N minions. The machine lets you choose which minion
you want spawn next from the list of possible minions, but you can only spawn each
once. All minions are unique in their own ways, but they might still have the same work
capacity.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
of the following T cases then consist of two lines. The first line has two integers: W ,
the number of work units Ruben needs completed, and M , the number of minions the
machine can spawn. Then follows a line with M integers Ci, representing how many work
units each minion can complete.

Output specifications

Output the minimum number of minions needed to complete the workload W , or output
“no rest for Ruben” (without the quotes). Please note that you need a capital r in
Ruben’s name.

13



Notes and Constraints

• 0 < T ≤ 50
• 0 < W ≤ 10000
• 0 < M ≤ 100
• 0 < Ci ≤ 100

Sample input

4

4 5

1 2 4 100 3

10 10

1 1 1 1 1 1 1 1 1 1

20 10

9 1 1 1 1 1 1 1 1 9

100 5

81 1 2 1 4

Output for sample input

1

10

4

no rest for Ruben

14



Problem F

Kings on a Chessboard

You are given a chessboard of size x × y and k identical
kings, and are asked to place all the kings on the board
such that no two kings can attack each other. Two kings
can attack each other if they are horizontally, vertically or
diagonally adjacent.

Write a computer program that calculates the number
of possible arrangements of the k kings on the given
chessboard. Since the number of feasible arrangements may
be large, reduce the number modulo 1,000,000,007.

Input specifications

The first line of the input consists of a single integer T , the
number of test cases. Each of the following T lines consists of three integers x, y and k,
separated by one space.

Output specifications

For each test case, output the number of possibilities modulo 1,000,000,007.

Notes and Constraints

• 0 < T ≤ 50
• 2 ≤ x, y ≤ 15
• 1 ≤ k ≤ x · y

Sample input

4

8 8 1

7 7 16

7 7 7

3 7 15

Output for sample input

64

1

2484382

0

15



16



Problem G

Traveling Cellsperson

You have solved every problem from Project Euler in your
head. Now it is time for a problem you might have heard of,
namely The Traveling Salesperson, whose decision version
is NP-complete. We consider the Traveling Salesperson
problem in a 2D rectangular grid where every cell can be
reached from their neighboring cells (up, down, left and
right) and you can visit a cell as many times as you like (though, most of the cells aren’t
that interesting, so you might prefer not to visit them a lot).

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Then
follow two integers X and Y , marking the width and height of the grid, respectively. Then
follow Y lines with X characters, where the character ’C’ is a cell and the character ’S’ is
the starting point.

Output specifications

For each test case, output the minimum number of steps required to make a full roundtrip
of the grid, starting and ending at S, and visiting each cell at least once.

Since you realize that this won’t lead anywhere, finish off the output with “LOL”
(without quotes) on a line of its own (one per run, not per test case).

Notes and Constraints

• 0 < T ≤ 50
• 0 < X ≤ 100
• 0 < Y ≤ 100
• All characters in a test case are ’C’, except for exactly one, which is ’S’.

17



Sample input

1

4 4

CCCC

CCCC

CSCC

CCCC

Output for sample input

16

LOL

18



Problem H

Dimensions

You and your friend Christian have decided to take a
vacation year and travel all around the world to see
magnificent places, meet wonderful people, and experience
new cultures. Unfortunately, with different cultures come
difficult differences. And the hardest differences engineers
like you know of are unit differences. Why are people using
miles, firkins, microfortnights, candlepowers, boisseaux,
foes, pints, kWh and not to mention degrees Celsius when
they instead would be much happier using the standard and
beloved SI units of metres, kilograms, seconds, amperes, kelvins and candelas?

Quantity Name Symbol
length metre m
mass kilogram kg
time second s
electric current ampere A
temperature kelvin K
luminous intensity candela cd

Table 1: List of SI units

In fact, you love the SI units so much that you refuse to use any other units. Derived
units like the joule (J), the newton (N), and the ohm (Ω) are perfectly expressible in their
equivalent SI units of kg m2 / s2, kg m / s2, and kg m2 / s3 A2, respectively. So during
your travel, you record all units you come across, along with their definitions. Of course,
some definitions are depending on other definitions, like Pa = N / m2.

With your definitions ready at hand, you don’t have to put up with such nonsense as
60 firkins / microfortnights or 63 km / h anymore, since you can always convert them SI
units. Even calculations like 100 m + 1.3 km and 7 N · 8 Ω become a breeze to you.

Input specifications

The following syntax is given (’?’ denotes “zero or one”, ’+’ denotes “one or more”, and
’*’ denotes “zero or more”):

power ::= { integer larger than 1 }
unit ::= { upper or lower case English letter }+
dimension ::= unit [’^’ power ]?
size ::= {any floating-point number} [’ ’ dimension]* [’/’ [’ ’ dimension]+]?
operator ::= ’+’ OR ’-’ OR ’*’

19



expression ::= size ’ ’ operator ’ ’ size
unit definition ::= unit ’=’ size

All units have lenghts less than 10, and in a size, no units are repeated.
The first line of the input consists of a single integer U , the number of new units.

Then follow U lines with new unit definitions. After the unit definitions follows a line
with a single integer N , and then N lines with either an expression or a size.

In the input, all powers are less than 5, and all units are SI unit symbols or previously
defined units.

Output specifications

For each computation, output one line with the answer to the expression, or the size
itself, converted to SI units. If the answer cannot be computed, output “Incompatible”
(without the quotes). The answer should be formatted as a size, with the following
clarifications:

• Units can be written in any order, but keep them on the correct side of the division
sign.
• Do not output a unit if its exponent is 0, or its exponent if it is equal to 1.
• Output one space between each unit and between units and the division sign, \.
• Do not output any spaces before or after the exponent sign, ^.

Notes and Constraints

• 0 < U ≤ 100
• 0 < N ≤ 1000
• Units are case sensitive.
• No lines are longer than 140 characters.
• No input, output or part of any computation have size of absolute value above 10100.
• No part of any computation will yield division by 0.
• Any output with a relative or absolute error of 10−6 is accepted.

Sample input

4

km = 1000 m

h = 3600 s

J = 1 kg m^2 / s^2

X = 3 m^2 kg s / A K cd^4

4

100 m + 1.3 km

63 km / h

1E5 J * 0.003 h^2 / km^2

1 J - 2 X

Output for sample input

1400.0 m

17.5 m / s

3888.0 kg

Incompatible

20



Problem I

Space Travel

The year is 2014. Mankind has come a long way since
that crucial day in 2013 when genius students wrote those
groundbreaking programs at IDI Open. Travelling in space
has become as normal as feeding your personal crocodile;
something you never do more than once...

You want to do something about this, and have
identified the problem with space travel to it being too time
consuming. You therefore decide to write a program that
finds the optimal (shortest in time) travel route between
two points in three dimensional space.

This is made somewhat more complex due to the
existence of worm tubes. A space traveller can enter a worm tube at any point (on
it) and leave at any point. This process takes no time at all. A worm tube is modelled as
a line segment in a three dimensional space.

Other than in worm tubes, travel time is proportional to the distance travelled.

Input specifications

The first line contains T , the number of test cases that follow. Each test case starts with
a line containing an integer N , the number of worm tubes in space. Then follows a line
containing three integers sx, sy and sz, the starting point for the route you’re going to
find the optimal route for. Then follow a line containing the corresponding end point, ex,
ey and ez.

After that follow N lines, describing the N worm tubes. Each worm tube is described
by 6 integers sxi, syi, szi, exi, eyi and ezi, describing the start and end point of that tube.

Output specifications

For each test case, output a single floating point number; the distance travelled outside
of worm tubes in the optimal route.

21



Notes and Constraints

• 0 < T ≤ 50
• 0 ≤ N ≤ 50
• 0 < px, py, pz ≤ 1000, for all s and e.
• The two end points of a worm tube are not equal.
• Any output with a relative or absolute error of 10−6 is accepted.

Sample input

2

0

10 12 15

9 11 16

2

100 100 100

123 126 129

102 109 103 110 120 113

108 121 104 120 125 122

Output for sample input

1.7320508075688772

21.56720748874348

22



Problem J

C.S.I.: P15

You have been cast as the computer genius hero-of-the-
day for the season finale of the show C.S.I.: P15 (coming
this fall). Somewhat unsurprisingly, there is that camera
feed that needs to be analyzed. The camera in question is
recording pictures in HD-9000 quality with extra regression
and the stream is then internally matched by a re-inverted
isomorphic bit coefficient matrix, then plasma shifted five
times for good measure. You then view the feed through
Netscape Navigator 4 Platinum Edition. (Note that
“internally” is just fancy talk for “inside the camera”.)

Unfortunately, a saboteur turned on ASCII mode on the camera and set the camera
in picture burst mode. So now all you have is a bunch of still ASCII images. And now,
for reasons that will be revealed later in the show, you are to design and implement a
deterministic algorithm for counting the number of flowers and birds in a given still image.
The pictures always include the ground, which will show up as a contiguous row of ’=’
characters. The ground will always be the bottom-most row of “ASCII pixels”. There
will never be anything else on that row (though, on one of the pictures taken before the
sabotage there is a stray electron that a someone will accidentally find by zooming in too
far, but that is for a later episode).

Air is marked in the feed as a ’.’ (a dot). The ground is the last line of the feed,
and it looks like this: ’===========’. A flower is defined as any 8-connected component
(meaning ...) which consists of characters from the set {’|’, ’/’, ’\’, ’-’, ’@’}, and which
is also connected to the ground. A bird is an occurence of ’/\/\’, surrounded exclusively
by air, or by the edges of the image. So if you see something that looks like a bird on the
ground, it is a flower (possibly an ex-parrot, but that is also a flower for our purposes).

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
of the following T cases then begins with a line of two integers separated by a space,
the height H and width W , and ends with H lines describing the picture. Each line of
the picture has exactly W characters. All lines but the last consist of only the following
characters: {’.’, ’|’, ’/’, ’\’, ’-’, ’@’}. The last line consists of ’=’ characters only.

23



Output specifications

For each test case, output two lines. If the number of flowers is F and the number of
birds is B, the output should read

Flowers: F

Birds: B

Notes and Constraints

• 0 < T ≤ 100
• 0 < W ≤ 30
• 0 < H ≤ 30

Sample input

1

12 28

............................

............................

\@/.../\/\..../\/\..........

.|..........................

.|....\@/.........../\/\....

.|.....|.............|......

.|.....|.............|......

.|.....|..\@/....\@/.|......

.|.....|....\..../...|.|-|..

.|.....|.....\../....|.|.|..

.|.....|......\/.....|.|.|..

============================

Output for sample input

Flowers: 5

Birds: 2

24


