
IDI Open
Programming Contest

April 21th, 2012

Solution sketches

A Angry Grammar Nazi

B Neurotic Network

C Special Services

D Negative People in Da House (Easy)

E Ruben Spawns (Easy)

F Kings on a Chessboard

G Traveling Cellsperson

H Dimensions

I Space Travel

J C.S.I.: P15

Problem A

Angry Grammar Nazi

Problem author: Ruben Spaans

For each line you can do three separate loops over all
words, checking for each type of offending word:

• For each word that equals u or ur, increase the
counter.

• For each occurrence of should or would followed by
of, increase the counter.

• For each word containing lol, increase the counter.
Use your favourite language’s function for searching
for a substring within a string.

Finally, output counter * 10.
Splitting the sentence into individual words can be easily

done in Java using String.split(" ").

2

Problem B

Neurotic Network

Problem author: Christian Neverdal Jonassen

Process each node: Add its value multiplied by its
outgoing edge weight to the downstream neighbour’s value.
A node can only be processed if all its upstream neighbours
have been processed. There are multiple ways of doing this.

One way is to maintain a queue which at any given
time contains all nodes with no unprocessed upstream
neighbours, and pick new nodes to process from this list.
A node is added to this list when its number of unprocessed
upstream neighbours reaches zero. This check can be performed by keeping track the
“in-degree” of each node, which is the number of upstream neighbours. When a node is
processed, decrease the downstream neighbour’s in-degree by 1 and push it to the queue
if the in-degree reaches 0.

Another way is to build an adjacency list of neighbours for each node, and do a depth-
first search, calculating the final value in a top-down manner. This approach only works
if the recursive function has a small stack frame. Otherwise one could risk overflowing
the stack.

Approaches needing O(N2) time (where N is the number of nodes), for instance by
searching through all nodes for one with in-degree 0 are not fast enough for N = 10000.

The easiest way to find the parity of the output value is to do all intermediate
calculations modulo 2,000,000,014, as this doesn’t change the parity of the node values.
It is also possible to use the original modulus and keep track of the parity for each node
and updating it using boolean arithmetic.

3

Problem C

Special Services

Problem author: Eirik Reksten

This problem requires you to efficiently verify whether it
is possible to satisfy the demands of a given set of bookings,
as this is to be done a whole bunch of times for each test
case. To do that, you need to quickly determine whether all
demands (across all the current bookings) can be matched
to a unique employees. As in so many cases, matching
problems can be solved using a max-flow algorithm.

Imagine a bipartite graph consisting of employees on one
side, and all possible qualifications on the other. Let there
be an edge between each employee and all the qualifications
he/she possesses. Now, add an edge from each employee to
a sink node, with a flow capacity of one.

To check whether a set of demands could be satisfied, you would then need an
edge (capacity one) from a source node to the qualification for each demand of that
qualification. If the total flow in this graph is equal to the total number of demands, the
whole set of bookings can be accepted. Whenever a new booking is added, you will need
to check whether the system consisting of all previously accepted bookings and the new
one can be accepted as a whole.

If you build this graph from scratch every time a new booking/cancellation is made,
you lose the information already stored in the graph, and thus also a lot of time. We
therefore need to handle bookings and cancellations with care.

Adding a booking can be done easily by inserting a new source node into the (accepted)
graph, with its own edges to every demanded qualification. Increase flow as far as it goes,
and if the increase is equal to the amount of demands made by that booking, it should be
accepted and you’re finished. If not, do a cancellation of this last booking, as explained
next.

When cancelling a booking, you need to remove all flow and edges associated with
that particular booking. As the graph is directed and acyclic, this is as simple as first
tracing all flow from the booking node to the sink, removing it along the way. Where
there is more than one possible path, any will do. Then simply delete the node and all
edges entering or leaving it.

The solution will also require appropriate data structures for keeping track of bookings,
qualifications and employees, but as that is relatively simple compared to the rest of the
solution, this is left as an exercise.

4

Problem D

Negative People in da House

Problem author: Christian Neverdal Jonassen

Initially, assume that the house is empty. Simulate the
process and at each time keep track of the number of people
P in da house. If P becomes negative, you know that there
must have been at least −P people in the house to begin
with. Let Q be the smallest value of P encountered during
the simulation. The answer that should be output is −Q.

5

Problem E

Ruben Spawns

Problem author: Christian Neverdal Jonassen

This problem can be solved by taking the most capable
available minion until the total workload is completed. This
can be done by sorting the minion work units in reverse
order, and find the number of elements you have to sum
together before reaching the given workload. If the given
workload cannot be reached even by using all minions,
output “no rest for Ruben”.

6

Problem F

Kings on a Chessboard

Problem author: Ruben Spaans

At first this might seem like a backtrack problem similar
to the well-known N -queens problem. But this approach is
too slow here.

In order to solve this we need the following observation:
Assume that we have placed kings on the r first rows, and
have yet to place kings on the remaining board. Then, only
the kings placed on the last of these rows determine where
we can and cannot place kings on the next unprocessed row.

This, along with the maximal board dimension size of
15, suggests a dynamic programming approach, where we
keep track of where we are allowed to place kings in the next row we are about to process.
In addition, we need to keep track of the number of rows we have processed, and the
remaining number of kings to place.

The subproblems in the DP can be described as this: In how many ways is it possible
to place kings on the first r rows so that we have j kings left to place, and the next
unprocessed row has a set of cells S where kings can be placed? The initial state is the
one where no rows are processed and we have k kings left to place (where k is given from
the input), which can be achieved in one way.

The set S of cells to place the kings can be represented with a bitmask of size 15,
where a set bit indicates that the king can’t be placed there. We then iterate over all the
different subproblems starting from the empty board, and try all ways to place the kings
in the current row, and add the number of combinations to later states.

An upper bound for the number of states is the number of bitmasks times the number
of rows times the number of kings left to place. It is never possible to place more than
64 kings on a 15 × 15 board, so we don’t need to include subproblems with 65 or more
remaining kings in the state space. Hence, the upper bound on the number of states are
215 · 16 · 65. Also, not all 215 combinations of bitmasks as possible as a consequence of
it not being possible to place two kings next to each other. We will not prove it here,
but the number of possible bitmasks is F17 = 1597, the 17th Fibonacci number, which is
significantly less than 215. However, it was still possible to solve the problem with a DP
array with 215 · 16 · 65 elements, which would require around 136 MB when using 32-bit
integers.

Some other optimizations are possible, like storing only two rows simultaneously in
memory and precalculating all answers, but none of them were required in order to get
accepted.

7

Problem G

Travelling Cellsman

Problem author: Christian Neverdal Jonassen

This problem can be broken down into a few cases, all
of which can be solved with closed formulas. The first
observation is that the starting position “P” doesn’t matter,
since all cells are going to be visited as a part of a closed
loop.

• x = 1 or y = 1: Assume without loss of generality that x = 1. The path goes
back and forth, so 2(y − 1) moves are needed. Notice that the answer for the case
x = y = 1 is 0.

• x · y even: The answer is xy.

• x · y odd: At one point one has to visit one cell, and go back to a previously visited
cell. Only one extra visit is needed, so the answer is xy + 1.

8

Problem H

Dimensions

Problem author: Børge Nordli

The problem describes three operations defined on a size,
which consists of a quantity and some units. The main part
of the solution is to create a standard representation of a
size, using one floating-point number for the quantity and
an integer list of the powers of each of the 6 SI units. The
operations on two sizes in standard representations are as
follows:

X + Y : The two sizes must have exactly the same di-
mension powers. The quantity of the sum is X.quantity+
Y .quantity.

X −Y : The two sizes must have exactly the same dimension powers. The quantity of
the difference is X.quantity− Y .quantity.

X · Y : The quantity of the product is X.quantity · Y .quantity. The dimensions of
the product is the sum of the respective dimensions.

In addition, the power operation is needed:

XN : The quantity of the expression is (X.quantity)N . Each dimension power is
multiplied by N .

When a new unit is defined, you should look for any non-SI units in the input. Their
standard representations should be looked up (for instance in a hash table, but a simple
array or list should suffice), and using the power and multiplication operations, the new
unit should fairly easily be converted to the standard representation as well. When you are
asked to convert a size, convert it to the standard representation, just as above. When you
are asked to compute the answer to an expression, first split the input by the operator
(note that “/” is not an operator in this problem), convert each side to the standard
representation and perform the requested operation.

The second part of the solution is to perform the parsing of a size. The syntax
definition looks scary, but when you look at it closely, it is fairly friendly. Everything is
nicely surrounded by spaces, so String.split(" ") should be used first. Then the first
part is always the quantity, and the rest are units, possibly with exponents. If a division
sign, /, is encountered, every subsequent unit power should be negated.

When outputting a size, just make sure that you follow the clarifications of not
outputting the unit if its power is 0, not outputting the exponent if its power is 1, and
wait with outputting units with negative power until you have written the division sign.

The limits clarifies that a double should be sufficient for computing quantities, and
that you should not need to take special precautions.

Before submitting, it is wise to test your program with some special cases, like the

9

following:

• 2 // no units

• 2 / unit // only units with negative powers

• -2 s // negative quantity

• 1E-2 // negative mantissa

10

Problem I

Space Travel

Problem author: Eirik Reksten

The hard part of this problem is calculating the
distance between the line segments (and the points and
line segments). Once that is done, as well as correctly
implemented, this is a simple shortest path problem. The
amount of nodes is relatively small, so almost any shortest
path algorithm will suffice. Pick your favorite among for
instance Bellman-Ford, Dijkstra and Floyd-Warshall.

Calculating the distances requires a little bit of work,
however. Lets first solve the simpler case of distance
between a line segment AB and a point P .

First, we check whether the point is closest to one of the end points on the line. If it
is, we can simply calculate the distance between those two points. To find whether this
is the case, one can use the dot product of the lines AB and BP to find the angle ∠ABP
(and conversely BA · AP for the angle ∠BAP . This is due to the fact that

AB ·BP = |AB||BP | cos(θ) (1)

where θ is the angle between AB and BP .
If this is not the case, the distance is equal to the distance between P and the infinite

line passing through A and B. The absolute value of the cross product between AB and
AP is equal to the area of the parallellogram with two sides defined by the lines AB
and AP . Using the fact that this area is also equal to the length of the line AB and its
distance to P , it is simple math to find the distance.

Now that we have a way to calculate the distance between a line segment and a point,
we can do a ternary search along one segment to find the distance between two line
segments.

11

Problem J

C.S.I: P15

Problem author: Christian Neverdal Jonassen

The first step is to count the flowers. Iterate through
each ground cell, and do a flood fill from the cell to the
north if it contains a flower character and it has not been
visited in a previous call to the flood fill routine. The flood
fill can be implemented using breadth-first or depth-first
search, or even a disjoint-set data structure. The flood fill
routine checks each of the 8 neighbours for a previously
unseen flower character, and in turn processes these and
marks them as visited. The number of flowers is identical to the number of times the
flood fill routine was successfully launched.

To count the number of birds, scan the entire image after the string /\/\. This
component is a bird if and only if it has not been visited by the flood fill routine, and
each neighbouring cell is air or is outside the grid.

12

