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Problem A
LogDB

A LogDB database is filled with facts. A fact is a name with a body consisting of a parenthesized list of names.
This is similar to a function call:

fact1(arg1, arg2, arg_3, 4, 4)thing(p1, arg2, p3).

fact1 is the name of the fact and the list of names in the body are the arguments of the fact. thing is another fact.
The names in the list are separated by commas and optional whitespace. There will be at least one name in the list.
Names consist of alphanumeric characters (a-z,A-Z,0-9) plus ‘_’. However, the name of a fact and the names in

the body cannot start with an ‘_’.
Names, parentheses, and commas may be preceded and followed by whitespace. However a fact or query cannot

be split across lines.
Facts with different numbers of arguments are different facts.
A fact may appear multiple times in the database.
Queries are like facts except the argument list can contain variables. Variables are names that start with ‘_’.
A query searches the database for facts with the same name as the query that have the same number of arguments

as the query and where the names in the fact body match the names in the query body in their respective positions.
A variable consisting of only ‘_’ is special and will match any name.
A variable other than ‘_’ will also match any name but if that variable appears more than once in a query, the

names in the fact must be the same.
A query:

fact1(arg1, _, _, _check, _check)

will match fact1(arg1, arg2, arg_3, 4, 4).
Variables are only defined in the query they appear in. They are not necessarily related if they are in different

queries.

Input
The input consists of two sections: facts and queries. Judged data has no syntax errors.

The fact section consists of a series of lines of at most 200 characters. That section is terminated by a blank line.
Each line consists of facts which may (or may not) be separated by whitespace. The fact section will consist of no
more than 200 lines.

The query section consists of a series of lines of at most 200 characters. That section is terminated by end-of-file.
Each line is a query. The query section will consist of no more than 200 lines.

Output
For each query print the number of facts returned by the query as an integer with no leading or trailing whitespace and
no unnecessary leading zeros. If a matching fact appears multiple times in the database, count each occurrence.
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Sample Input 1

test(arg1, arg2,arg3) test(1,2,3,not4)5(five) five_seven(john_smith,10_17_57)
foo(1,2,3,4) foo(5,6,7,8) foo(1,2,7,8)arc(80) foo(abc,xyz)
bar(1,2) bar (7,8) zoom(8,7)
arc(80) nofoo(alpha,d1,d2,d1,d4,d1)
foo(bar,spam) foo(more,less)

test(_,_,_,_)
arc(80)

foo(bar,_)
foo(_,spam)
foo(_,less)
nofoo(_,_p1,_,_p1,_,_p1)
foo(bar,less)

foo(_,_,_,_)
foo(_,_,_30,_40)
foo(_,_,_30,_40)
foo(_,_,_30,_40)
foo(_x,_,_30,_40)
foo(_,_,_30,_40)

Sample Output 1

1
2
1
1
1
1
0
3
3
3
3
3
3
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Problem B
Ride-Hailing

Jamal owns a new ride-hailing business. His business operates in the following way: At least 12 hours before
a trip is desired, a customer orders a trip from a starting location to an ending location to take place at a specified
starting time. Although Jamal has considered ride-sharing in the past, due to the ongoing pandemic, each ordered
trip is currently completed before another begins. Jamal’s company has a layout of the current service area and upper
bounds for the time required to drive any particular road. At some point, the team would like to incorporate traffic data
to make the map dynamic, but at the moment fixed costs are what we have to work with.

By having each trip scheduled in advance, Jamal’s company is able to optimize route-planning and provide an
attractive business model for drivers. His company does this in the following way: Every 8 hours, Jamal selects a set
of drivers to work a shift picking up and dropping off customers according to their desired schedules. Drivers are then
paid per shift worked, rather than per trip completed. Jamal has found this model to be more satisfactory to drivers
compared to current ride-hailing businesses. In current businesses, drivers face uncertainty as to how many rides they
will be able to procure, and thus how much money they will earn. Jamal’s business, on the other hand, pays drivers
for every shift they work, and so a driver will either be earning money (if they work a shift) or be free to occupy their
time by other means (if they aren’t needed for a shift), instead of waiting around in their car hoping for a passenger to
request a ride.

Unfortunately, Jamal is more of a business-type and needs help with coding for his company. In particular, he
is lacking the algorithm to determine given a set of ordered trips in an eight-hour window, the minimum number of
drivers that should be hired for the given shift. Can you help Jamal with this crucial task?

Figure B.1: Illustration of sample input. Scheduled trips are depicted by dashed red lines with their respective start
times. The optimal solution is to have one driver complete the trip from 2 to 3 at time 0, then travel to location 1
arriving at time 8, and then complete the trip from 1 to 2. The second driver can complete the trip from 3 to 4.
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Input
Input will begin with three integers on one line: n (2 ≤ n ≤ 100), the number of pickup or destination locations in
the model of the service area, m (1 ≤ m ≤ n ∗ (n− 1)), the number of one-directional roads in the service area, and
k (1 ≤ k ≤ 1000), the number of requested trips that must be fulfilled. The next m lines each contain three integers
u, v, and w (1 ≤ u, v ≤ n, u 6= v, 1 ≤ w < 480), indicating there is a road from location u to location v that takes
w minutes to travel. Between any two locations u and v, there can be a road from u to v and from v to u but there
will be at most one road in one direction between any two locations. The next k lines each contain three integers u,
v, and t (1 ≤ u, v ≤ n, u 6= v, 0 ≤ t < 480), indicating there is a trip requested from location u to location v
departing location u at minute t. There can be multiple trips requested from the same starting locations at the same
time or arriving at the same ending locations at the same time. It is guaranteed every location is accessible from any
other location.

Output
Output a single integer representing the minimum number of drivers that must be hired for this shift to complete all
trips. Roads can be used by as many drivers as required. Assume pickup and drop-off takes 0 minutes. Picking up or
dropping off at the same location does not delay trips. Assume hired drivers can drive to any starting location so they
are ready to pick up any trip at minute 0 and are willing to complete trips requested before minute 480 that finish on
or after minute 480. Customers must be picked up exactly at their desired pickup time.

Sample Input 1 Sample Output 1

4 5 3
1 2 3
2 3 6
3 1 2
3 4 8
4 3 9
1 2 8
2 3 0
3 4 5

2
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Problem C
Redundant Binary Notation

Binomial trees of a binomial heap. Wikimedia, cc-by-sa

Redundant binary notation is similar to binary notation, except
instead of allowing only 0’s and 1’s for each digit, we allow any
integer digit in the range [0, t], where t is some specified upper
bound. For example, if t = 2, the digit 2 is permitted, and we
may write the decimal number 4 as 100, 20, or 12. If t = 1,
every number has precisely one representation, which is its typ-
ical binary representation. In general, if a number is written as
dldl−1 . . . d1d0 in redundant binary notation, the equivalent decimal
number is dl · 2l + dl−1 · 2l−1 + · · ·+ d1 · 21 + d0 · 20.

Redundant binary notation can allow carryless arithmetic, and
thus has applications in hardware design and even in the design of worst-case data structures. For example, consider
insertion into a standard binomial heap. This operation takes O(log n) worst-case time but O(1) amortized time. This
is because the binary number representing the total number of elements in the heap can be incremented in O(log n)
worst-case time and O(1) amortized time. By using a redundant binary representation of the individual binomial trees
in a binomial heap, it is possible to improve the worst-case insertion time of binomial heaps to O(1).

However, none of that information is relevant to this question. In this question, your task is simple. Given a
decimal number N and the digit upper bound t, you are to count the number of possible representations N has in
redundant binary notation with each digit in range [0, t] with no leading zeros.

Input
Input consists of a single line with two decimal integers N (0 ≤ N ≤ 1016) and t (1 ≤ t ≤ 100).

Output
Output in decimal the number of representations the decimal number N has in redundant binary notation with each
digit in range [0, t] with no leading zeros. Since the number of representations may be very large, output the answer
modulo the large prime 998 244 353.

Sample Input 1 Sample Output 1

4 2 3

Sample Input 2 Sample Output 2

6 3 4

Sample Input 3 Sample Output 3

479 1 1

Sample Input 4 Sample Output 4

3846927384799 62 690163857
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Sample Input 5 Sample Output 5

549755813887 2 1
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Problem D
Substring Characters

The set of distinct characters in a string is referred to as the generalized period of the string. As an example, the
generalized period of the string “aabbabb” is {‘a’,‘b’}

A proper substring is a contiguous substring that is contained in a string and is not the string itself. So “aabbabb”
is not a proper substring of the above example.

A minimal proper substring is one that can have no character removed from either end and still have the same
generalized period. “aabb” is a proper substring of the example, but it is not minimal. “ab” is minimal.

Unique means that multiple occurrences of the same minimal proper substring in a string are only to be counted
once. In the example, “ab” appears twice, but is counted once—hence the number of proper minimal unique substrings
with the same generalized period of the entire string is two: “ab” and “ba”.

Your team is to write a program to count the number of proper minimal unique substrings of a given string that
have the same generalized period as the string itself.

Input
Input to your program is a series of lines terminated by end-of-file. Each line is a test case consisting of alphanumeric
characters (a–z, A–Z, 0–9). Upper-case and lower-case letters are distinct. The new line character is not part of the
test case string. No test case string will exceed 80 characters. There will be at most 100 test strings in input.

Output
For each input line print a line containing the number of proper minimal unique substrings of the input string with no
leading or trailing whitespace and no extra leading signs or zeros.

Sample Input 1 Sample Output 1

aabbabb
abAB34aB3ba7
104001144
aaabcaaa
a
bb
bd
1234567

2
1
3
2
0
1
0
0
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Problem E
Curve Speed

To help with vehicle stability, the outer edge of a road in a curve is raised with respect to the inner edge. This is
called superelevation and is specified as the difference in elevation divided by the width of the road. It needs to be
higher for faster speeds and sharper curves.

The radius of a curve is the radius of the section of a circle along the middle of the road where the curve is constant.
See Figure 1 for a drawing of this.

Figure E.1: Section of a circle along the middle of a road with radius R.

In some cases the curve may need a lower speed limit than straight portions of the road. The superelevation
shouldn’t be more than about .12 to keep vehicles from sliding off the road in slippery conditions.

Your job is to calculate the maximum speed on a curve given the radius of the curve and the superelevation.
The maximum speed is given by this formula:

V =
√

(R ∗ (S + .16))/.067,

where V is the max speed in miles per hour, R is the radius of the curve in feet, and S is the superelevation.

Input
The input is a series of lines terminated by end-of-file. Each line will be a test case consisting of R and S separated
by whitespace. R will be an integer greater than 99 and less than 5281 and S will be a real number greater than .009
and less than 1.0. Neither will have leading zeros. There are at most 100 lines in input.

Output
For each test case output the maximum speed rounded to the nearest integer. It is guaranteed the answer before
rounding will not be within 10−3 of a half-integer value.
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Sample Input 1 Sample Output 1

1433 .09
1433 .12
2000 .09
600 .12

73
77
86
50
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Problem F
Agamemnon’s Odyssey

Example map

Agamemnon, the great king of Mycenae, was assembling his
troops in Aulis to sail to the shores of Troy, when he had a vision
of goddess Artemis. In this vision, Agamemnon found out that he
had accidentally slain a deer that was sacred to Artemis, and now the
goddess swore to make Agamemnon suffer on his voyage to Troy.

Along his route to Troy, Agamemnon was planning to stop at
the islands of Crete to gather resources for his formidable army. If
Artemis were to find out about the sea routes Agamemnon took, she
would use her powers to stop the wind along those routes, leav-
ing Agamemnon and his crew stranded. As the trusty advisor of
Agamemnon, you now have to help him devise a path between the
islands of Crete that provides the army the maximum amount of re-
sources, without letting Artemis discover the routes you take.

The N islands of Crete are connected to each other via N − 1 sea routes. Along each route, Agamemnon can
acquire a certain amount of resources. However, if a route is used more than k times, Artemis will detect the presence
of Agamemnon along that route and stop the wind along that route. So, a feasible plan cannot use any route more than
k times.

Given that Agamemnon can start and end at any of the islands of Crete, come up with a feasible plan that maximises
Agamemnon’s resource earnings. Note that Agamemnon can only collect resources along a sea route during its first
use. He does not earn extra resources from a route on reusing it.

Input
The first line of input will contain two integers, N (1 ≤ N ≤ 2 · 105) and k (1 ≤ k ≤ 109), the number of islands
of Crete, and the maximum number of times a single route may be used without being discovered by Artemis. The
islands of Crete are guaranteed to be connected by the sea routes.

The following N − 1 lines describe the sea routes. Each line contains 3 integers each, u, v (1 ≤ u, v ≤ N, u 6= v)
and c (1 ≤ c ≤ 109), explaining that the sea route connects islands u and v and Agamemnon can acquire c units of
resources along this route. All sea routes are bidirectional, i.e. they can be used to travel from island u to v, or from
island v to u.

Output
Output a single value, the maximum amount of resources Agamemnon can acquire with a feasible plan, as described
in the statement.

Example
There are 5 islands in Crete, connected to each other via 4 routes, as shown in the figure: the first connecting island
1 and 2 and allowing Agamemnon to acquire 3 units of resources and so on. In this archipelago, the best plan for
Agamemnon is to start at island 4, visit island 1 (acquiring 5 units of resources along the 4 → 1 route), and then end
his path at island 5 (acquiring another 9 units of resources along the 1→ 5 route), having earned a total of 14 units of
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resources.

Sample Input 1 Sample Output 1

5 1
1 2 3
2 3 1
1 4 5
1 5 9

14

Sample Input 2 Sample Output 2

5 2
1 2 3
2 3 1
1 4 5
1 5 9

18
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Problem G
Safest Taxi

Consider a town whose road network forms an N ∗M grid, where adjacent intersections are connected by roads.
All roads are bi-directional. Each direction has an associated number - the time needed to travel from one end-point
to another.

Each direction of each road consists of one or more lanes. A lane can serve one of the following functions: left-
turn, straight, right-turn, or any combination of them. However, a left-turn lane cannot be placed to the right of a
straight or right-turn lane, and a straight lane cannot be placed to the right of a right-turn lane. There are no U-turn
lanes.

The rules for crossing intersections are illustrated in the above figure (suppose a car enters the intersection from
the south). To make a left turn, it must be in one of the L left-turn lanes; let’s number them 1 through L from left to
right. The traffic rule says Lane i must turn into the i-th lane (counting from the left) of the target road, except that
Lane L may turn into the L-th lane or any other lanes to its right.

Similarly, to go straight through an intersection, the car must be in one of the S straight lanes; let’s number them
1 through S from left to right. Lane i must go into the i-th lane (counting from the left) of the target road, except that
Lane S may go into the S-th lane or any other lanes to its right.

To make a right turn, the car must be in one of the R right-turn lanes. For the convenience of discussion, we
consider these lanes and those of the target road from right to left. Let’s number the right-turn lanes 1 through R from
right to left. Lane i must turn into the i-th lane (counting from the right) of the target road, except that Lane R may
turn into the R-th lane or any other lanes to its left.

It is guaranteed that if at least one left-turn / straight / right-turn lane is present, the target road must exist and have
enough lanes to accommodate the left turn / straight / right turn, respectively. The time spent on crossing intersections
is negligible.

In addition, a driver may change lanes in the middle of a road. Note that in the above rules for intersections, it
doesn’t count as a lane change to drive into any of the legal lanes of the target road. The time spent on lane changes is
negligible.

A trip starts and ends at the rightmost lane of the midpoint of roads. The time needed to travel midpoint-to-endpoint
is half of endpoint-to-endpoint.

NCNA 2020-21 Problem G: Safest Taxi 17
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You are running a taxi company called “Safest Taxi” in this town, with the slogan “your safety is in your hands”.
You let your customers choose the numbers X and Y for their trip, and the driver will make at most X left turns and
Y lane changes to accomplish the trip.

What is the shortest time to fulfill each trip given the rules?

Input
The first line consists of three integers N (2 ≤ N ≤ 15), M (2 ≤ M ≤ 15) and K (1 ≤ K ≤ 3), separated by a
single space. The town’s road network has N intersections north-south and M intersections west-east. Each road has
K lanes.

The second line consists of a single integer D. The town’s road network has D road segments. Every adjacent pair
of intersections must appear in the list exactly once.

Each of the next D lines describes a road segment with the following format:

R0 C0 R1 C1 T L0 L1...LK−1

This describes a road segment going from the intersection at row R0 column C0 to the intersection at row R1

column C1 (0 ≤ R0, R1 < N , 0 ≤ C0, C1 < M ). Rows are numbered 0 through N − 1 from north to south, and
columns are numbered 0 through M − 1 from west to east. The segment must connect two adjacent intersections, i.e.,
| R0 − R1 | + | C0 − C1 |= 1. The time to travel through the entire segment is T (2 ≤ T ≤ 100, T must be an
even number). The next K strings describe the function of each of the K lanes, from left to right, with the following
semantics:

L | Left-turn only
S | Straight only
R | Right-turn only
LR | Left-turn or right-turn
LS | Left-turn or straight
SR | Straight or right-turn
LSR | Left-turn, straight or right-turn

The next line consists of a single integer P (1 ≤ P ≤ 50), the number of trips to fulfill.
Each of the next P lines describes a trip with the following format:

RS0 CS0 RS1 CS1 RD0 CD0 RD1 CD1 X Y

This indicates that the starting point is the midpoint of segment (RS0, CS0)→ (RS1, CS1), and the destination is
the midpoint of segment (RD0, CD0)→ (RD1, CD1). Both segments must appear in the above list. Both the starting
point and the destination are on the rightmost lane. The customer requests that at most X (0 ≤ X ≤ 4) left turns and
Y (0 ≤ Y ≤ 4) lane changes are allowed for the trip.

Output
Output P lines. The i-th line contains a single integer which is the shortest time to fulfill each trip given the rules, or
−1 if no feasible route exists.

Sample Explanation
The first three lines of the sample output are illustrated in the figure below.
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• If X = 1 and Y = 1, the shortest path is shown in red: make a lane change before reaching E and make a left
turn. The total time is 8/2 + 8/2 = 8;

• If X = 1 and Y = 0, the shortest path is shown in green: go through E-F-I-H-E and make a left turn. The total
time is 8/2 + 16 + 8 + 8 + 8 + 8/2 = 48;

• If X = 0 and Y = 0, the shortest path is shown in blue: go through E-B-C-F-E. The total time is 8/2 + 16 +
16 + 8 + 18 + 8/2 = 66.

NCNA 2020-21 Problem G: Safest Taxi 19
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Sample Input 1 Sample Output 1

3 3 2
24
0 0 0 1 6 S R
0 1 0 0 8 L L
0 1 0 2 16 R R
0 2 0 1 18 LS S
0 0 1 0 8 LS S
1 0 0 0 8 R R
0 1 1 1 10 LS SR
1 1 0 1 16 L R
0 2 1 2 8 S R
1 2 0 2 8 L L
1 0 1 1 6 L SR
1 1 1 0 8 L R
1 1 1 2 16 L R
1 2 1 1 18 L SR
1 0 2 0 8 L L
2 0 1 0 8 S R
1 1 2 1 10 L R
2 1 1 1 8 LS SR
1 2 2 2 8 R R
2 2 1 2 8 LS S
2 0 2 1 10 LS S
2 1 2 0 12 R R
2 1 2 2 6 L L
2 2 2 1 8 S SR
6
2 1 1 1 1 1 1 0 1 1
2 1 1 1 1 1 1 0 1 0
2 1 1 1 1 1 1 0 0 0
0 1 0 2 0 2 0 1 2 0
1 0 0 0 0 0 1 0 2 0
2 1 2 0 2 0 2 1 2 0

8
48
66
131
112
95
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Problem H
Digital Speedometer

A digital speedometer shows a vehicle’s speed as integer miles per hour. There are occasions when the sensed
speed varies between two integer values, such as during cruise control. Using a single threshold to round between
adjacent integers often makes the display toggle rapidly between the two integers, which is distracting to the driver.

Your team must implement a smoothing technique for the display using separate rising and falling thresholds (tr
and tf , tf < tr, respectively). See Figure 1 for a graphical depiction of the Sample Input for use with the following
rules.

Each sensed speed, s, falls between two adjacent integers i and j, i ≤ s < j, where j = i + 1. When displaying
the sensed speed s as an integer:

• When s falls between i and i+ tf , s is displayed as i.

• When s falls between i+ tr and j, s is displayed as j.

• When s falls between i + tf and i + tr, s is displayed as i if the most recent preceding value for s outside of
range [i + tf , i + tr] is less than i + tr, and s is displayed as j if the most recent preceding value for s outside
of range [i+ tf , i+ tr] is greater than i+ tr.

• Any sensed speed, 0 < s < 1, must display as 1 because any non-zero speed, no matter how small, must display
as non-zero to indicate that the vehicle is in motion.

NCNA 2020-21 Problem H: Digital Speedometer 21
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Input
The first line of input contains tf , the falling threshold. The second line of input contains tr, the rising threshold. The
speed sensor reports s in increments of 0.1 mph. The thresholds are always set halfway between speed increments.
All remaining lines until end-of-file are successive decimal speeds, s, in miles per hour, one speed per line. The third
line of input, which is the first measured speed, will always be 0. There are at most 1000 observed speeds s in input.

0 < tf , tr < 1; tf < tr; 0 ≤ s ≤ 120

Output
Output is the list of speeds, one speed per line, smoothed to integer values appropriate to tf and tr.

Sample Explanation

Input Output Explanation

0.25 Value of tf .
0.75 Value of tr.
0 0 Initial input.
2.0 2 Input greater than 0, below threshold of 2.25.
5.7 5 Input greater than 2.0, in threshold range.
5.8 6 Input greater than 2.0, exceeds upper threshold of 5.75.
5.7 6 Input less than 5.8, in threshold range.
5.2 5 Input less than 5.8, below threshold of 5.25.
5.7 5 Input greater than 5.2, in threshold range.
0.8 1 Input greater than 0 and less than 1.
0.2 1 Input greater than 0 and less than 1.

Sample Input 1 Sample Output 1

0.25
0.75
0
2.0
5.7
5.8
5.7
5.2
5.7
0.8
0.2

0
2
5
6
6
5
5
1
1
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Problem I
Staggering to the Finish

An oval track and field racing track consists of two parallel straightaway sections connected by two semicircles,
depicted in Figure 1. Footraces run in the counterclockwise direction, ending at a common finish line located along
the lower straightaway. For races that exceed the length of a single straightaway, starting lines must be staggered
backwards, in the clockwise direction, from the finish line. The staggered starting lines must account for the curve of
the semicircles and the widths of each running lane.

Figure I.1: Oval track with 200m starting lines.

There are international standards for oval track dimensions. Unfortunately, the available area for a track doesn’t
always hold a standard track. Given the dimensions of the track and the length of the race, your team is to write a
program to ensure equal race lengths by computing the staggered starting line positions.

The total distance of a race for any given lane is computed from the line of running. The line of running is an
unmarked line to the right of the lane’s inside marker (as seen from the counterclockwise direction). See Figure 2. For
the innermost lane (lane 1) the line of running is usually farther from the lane marker than for the remaining lanes.

The track is mapped to an (x, y) coordinate system with (0, 0) at the center of the track. See Figure 1.

Input
The first line of input to your program contains seven values, N R S W F L1 L2, separated by whitespace, describing
the geometry of a track, where:

• N is the integer number of lanes. (1 ≤ N ≤ 9)

• R is the inner radius of lane 1, a real number in meters. See Figure 1. (1.0 ≤ R ≤ 100.0)

• S is the length of the straightaway, a real number in meters. See Figure 1. (1.0 ≤ S ≤ 200.0)
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Figure I.2: Inset showing staggered starting line locations.

• W is the width of each lane, a real number in meters. See Figure 2. (0.5 ≤W ≤ 3.0)

• F is the x-coordinate of the finish line, measured from the centerline in Figure 1, a real value in meters. The
finish line will always be in the lower (negative y) half of the track. (|F | ≤ S/2)

• L1 is the offset from the inner radius of lane 1 to the line of running for lane 1, a real number in meters. See
Figure 2. (0 ≤ L1 < W )

• L2 is the offset from the inner radius to the lines of running for lanes 2 and higher. See Figure 2. (0 ≤ L2 < W )

The remaining lines until end-of-file specify D, the distance of a race, one race per line, a real number in meters.
(1.0 ≤ D < 410.0.) There will be at most 100 distances D in input.

Output
Your program is to print a series of values for each race distance, separated from each other by spaces and/or newlines.
Print the race distance first, followed by the (x, y) coordinates of the staggered starting line locations in lane number
order. Express all values in meters. The (x, y) coordinate is the innermost point of a lane, NOT the line of running.
Treat each lane marker (straightaway or radius) as a zero-width line. International standards require that the values be
within 0.001 meters of the exact answer.

Sample Input 1

4 36.5 84.39 1.22 40.0 0.30 0.20
200.0
400
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Sample Output 1

200.000 -40.0006 36.5000 -43.5119 37.6970 -47.3108 38.6025 -51.0664 39.1679
400.000 40.0012 -36.5000 46.9998 -37.4127 54.4292 -36.9682 61.4438 -35.2464
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Problem J
Ada Loveslaces

A shoe has a lacing geometry: N , the number of eyelets (on a side), d, the distance between eyelets, s, the
separation between the columns of eyelets when the shoe is laced, and t, the thickness of an eyelet. In Figure 1 below,
N = 3, with eyelets numbered from 0 to 2N − 1.

Figure J.1: Eyelet numbering and dimensions for N = 3.

When laced, a shoelace of length L will have two free ends for knot tying. The free length of each end is f . The
length of f must fall within a certain range, [fmin, fmax] to accommodate a knot that is neither too small to tie nor so
large as to dangle. See Figure 2 for a common criss-cross pattern.

Figure J.2: Criss-cross lacing pattern showing free end length f .
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That special end of a lace that prevents fraying is called an “aglet.” You’re welcome.
Unfortunately, shoelaces break at the most inopportune times. Before purchasing a new shoelace, it is often

necessary to retie the shorter, broken lace, or replace it with another lace borrowed from another shoe.
Given N, d, s, t, fmin, fmax, and a series of replacement shoelace lengths, L, for each shoelace length determine

the number of lacing patterns that leave free ends, f , such that fmin ≤ f ≤ fmax. The rules of lacing are as follows:

• The resulting lacing pattern must be symmetric across a line drawn vertically between the even-numbered and
odd-numbered eyelets.

• The lace can only pass through an eyelet at most once.

• The lace can only pass between eyelets in the same column that are immediately adjacent.

• The free ends of the lace must emerge from eyelet numbers 2N − 2 and 2N − 1.

• The lace must pass directly between eyelet numbers 0 and 1 to ensure the shoelace holds the shoe on the foot.

You are to assume that the surface the eyelets are on is to be treated as a plane, that the shoelace passes through
the center of the eyelets, and that the thickness of the shoelace itself is negligible. The total length of the shoelace
that is used for lacing is the length used between the eyelets plus t for each eyelet the shoelace passes through. In the
example shown in Figure 2, 6t of the shoelace length is used by passing through the six eyelets.

Input
The input begins with a single line containing N, d, s, t, fmin, fmax, separated by whitespace. Each additional line is
a new value of L for which your program is to count the number of lacing patterns that meet the stated requirements.
There will be between 1 and 100 values of L. All measurements are in integer millimeters.

N will be between 2 and 9 inclusive. d will be between 5 and 30 inclusive. s will be between 10 and 50 inclusive.
t will be between 0 and 4 inclusive. fmin and fmax satisfy 0 ≤ fmin ≤ fmax ≤ 2 000. Shoelace lengths will be
between 200 and 2 000 millimeters inclusive. fmin and fmax will not be within a micron (0.001 millimeters) of the
free end lengths of a valid lacing pattern.

Output
For each shoelace length, your program is to print the number of possible lacing patterns that meet the above require-
ments. Values are to be separated from each other by newlines and/or spaces.

Sample Input 1 Sample Output 1

3 10 25 3 125 175
485
410

1
5
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Problem K
ICPC Record Matching

When using “software-as-a-service” offerings, a user often has a problem of matching records stored by the differ-
ent services and determining if they refer to the same entity (person, account, order, etc.) The ICPC is no exception.
While each participant has a record in the central ICPC registration system, additional “outside” applications may be
used to collect and process information for functionality not provided by the central system.

Once an “outside” application is used, it becomes necessary to match the entries from both systems. Unfortunately,
in spite of careful directions, sometimes it is not clear if records correspond to the same person. The primary sorts of
mis-matches that occur are these:

1. E-mail addresses do not match. This could be due to a misspelling, such as .eud instead of .edu, or different
e-mail addresses that a participant used in the central ICPC system and the outside system.

2. Exact names do not match. This could be due to a typing error, or varying use of legal names and nicknames.

Your team is to write a program that will read lists of people from the ICPC system and an outside system and determine
which records in each system do not match a record in the other system. Two entries are considered matched if either
the e-mail addresses are an exact match or the last name and first name are an exact match.

Input
Input to your program is two lists of name and e-mail address records. Each record consists of a first name, a last
name, and an e-mail address, one per line, separated from each other by tabs. The first list is the records from the
central ICPC registration system. This list ends with an empty line. The second list is the records from the outside
application. The second list ends with the end-of-file. (These lists are suitable test data, not actual ICPC data.)

E-mail addresses do not exceed 64 characters in length. E-mail addresses consist of lower-case and upper-case
English letters, digits, and the special characters at-sign, underscore, hyphen, and period. E-mail addresses do not
begin with special characters.

First and last names do not exceed 24 characters in length. Names consist of lower-case and upper-case English
letters and hyphens. Names do not begin with hyphens.

Each input list will contain at least 1 but not more than 2 000 entries. E-mail addresses and (first name, last name)
pairings will be unique within each list.

Output
Your program is to print lines showing the records from each list that could not be matched to the other list. Your
program is to first print the central ICPC registration records that could not be matched, one per line. Each line should
consist of the letter “I”, a single space, the e-mail address, a single space, the last name, a single space, and the
first name. These are to be printed in lexicographical e-mail address order. The e-mail addresses, last names, and
first names are to be printed exactly the way they appear in the input. Once all such records are printed, the outside
application records that could not be matched are to be printed the same way, except that each line should begin with
the letter “O”.

Case is to be ignored for all record matching comparisons and sorting.
Should all records from each system have a match in the other system, your program is to print a line containing

only the string “No mismatches.”.
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Sample Input 1 Sample Output 1

Bob Smith bsmith@gmail.com
Randy Nguyen rnguyen@gmail.com
Betty Jones jones123@gmail.com
Sallie Li SalLi@aol.com

Robert Smith bsmith@abc.edu
Quan Nguyen qnguy@xyz.edu
Betty Jones jones123@gmail.com
Sarah Leung sleung@mno.edu

I bsmith@gmail.com Smith Bob
I rnguyen@gmail.com Nguyen Randy
I SalLi@aol.com Li Sallie
O bsmith@abc.edu Smith Robert
O qnguy@xyz.edu Nguyen Quan
O sleung@mno.edu Leung Sarah

Sample Input 2 Sample Output 2

Camellia Woodley Camellia_Woodley3398@deavo.com
Leroy Thomas Leroy_Thomas7852@fuliss.net
Freya Campbell Freya_Campbell9926@ubusive.com
Eduardo Allen Eduardo_Allen3976@bauros.biz
Danny West Danny_West6110@twipet.com

Ed Allen eduardo_allen3976@bauros.biz
Daniel West Danny_West6110@twipet.com
camellia woodley camellia_woodley3398@deavo.com
Leroy Thomas Leroy_Thomas7852@fuliss.net
freya Campbell campbellf@deavo.net

No mismatches.
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Problem L
Codenames

Codenames is a popular board game. Two teams compete by each having a “spymaster” give one-word clues that
can point to multiple words on the board. The other players on the team attempt to guess their team’s words while
avoiding the words of the other team. The objective is to be the first team to have all their team’s words revealed.

Players split into two teams: red and blue. One player of each team is selected as the team’s spymaster; the others
are field operatives.

N Codename cards, each bearing a word, are laid out in a line. Each word represents one of the following: a red
agent, a blue agent, an assassin, or an innocent bystander. All players can see all the Codename words, but only the
spymasters know the identities of the cards.

Teams take turns. On each turn, the appropriate spymaster gives a verbal hint about the words on the respective
cards. Each hint may only consist of one single word and a number. The spymaster’s hint should be as close to their
own agents’ cards as possible. The hint’s number tells the field operatives the maximum number of guesses to make.

After a spymaster gives the hint, their field operatives make guesses about which Codename cards bear words
related to the hint and point them out, one at a time. When a Codename card is pointed out, the spymaster reveals the
identity of that card-—a blue agent card, a red agent card, an innocent bystander card, or the assassin card. Depending
on the identity of the card, one of these things happens:

• If an assassin is pointed out, the game ends immediately, and their team loses.

• If an innocent bystander is pointed out, the turn simply ends.

• If an agent of the other team is pointed out, the turn ends, and that other team is one agent closer to winning.

• If an agent of their team is pointed out, they are one agent closer to winning, and they may choose to make
another guess.

The game ends when all of one team’s agents are identified (winning the game for that team), or when one team
has identified the assassin (losing the game).

To simplify the problem, let’s assume that both teams share the same dictionary of hint words and their associations
with Codename cards. For example, consider this board (N = 6):

Plate(R) Screen(I) Novel(A) Robin(B) Iron(R) Server(B)

Table 1: (R: Red team’s agent; B: Blue team’s agent; I: Innocent bystander; A: Assassin)

The list of hint words and their associated Codenames cards is given in Table 2.
Once the spymaster gives a hint word and a number, K (an integer between 1 and the number of unrevealed

words associated with the hint), their field operatives make random guesses—with equal probability—from the list of
associated words that are not revealed yet. They will continue to make guesses until one of the following happens: (1)
they get K hits, (2) they have won the game, or (3) their turn ends with a miss. They will never make guesses outside
the list or use hints from the previous rounds. It is illegal for the spymaster to give a hint word whose all associated
Codename cards have already been revealed. All hint words can be used multiple times by either team.

For example, assuming the blue team goes first in the first round, the blue spymaster may give a hint “Twitter,
2”. The blue team has 1/3 chance of guessing “Screen”, “Robin” and “Server”, respectively. If they happen to guess
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Alfred Robin, Server, Plate
Net Server, Screen, Plate
Computer Screen, Server
Twitter Screen, Robin, Server
Crusoe Robin, Novel
Film Iron, Screen

Table 2: A list of hint words and their associated Codenames cards.

“Screen”, their turn ends as the word is an innocent bystander. Otherwise, they get a hit and will make another guess,
with 1/2 chance on either of the remaining two words. Regardless of the choice, their turn will end after this guess,
and the red team will start their turn with the red spymaster giving a hint.

Now you are selected as the spymaster, and your team (color specified in the input) goes first. Assuming both
spymasters play optimally, what is your probability of winning the game?

Input
The first line consists of an integer and a character, separated by a single space. The integer is N (1 ≤ N ≤ 15), the
size of the board. The character is R or B, indicating your team (red or blue).

The second line consists of N distinct words, separated by a single space. Each word consists of up to 20 lowercase
English letters.

The third line consists of N single-character strings, separated by a single space. The i-th string indicates the
identity of the i-th word, with the following meaning: R—Red team’s agent; B—Blue team’s agent; I—Innocent
bystander; A—Assassin. There are one or more “R” and “B” words, and there are zero or more “I” and “A” words.

The fourth line consists of an integer M (1 ≤M ≤ 50), which is the number of hint words.
Each of the following M lines consists of an integer Hi (1 ≤ Hi ≤ N ), followed by Hi distinct words separated

by a single space. It describes the associated Codename cards with the i-th hint word. All words are guaranteed to
appear on the board.

Output
Probability of winning the game. Your answer will be considered correct if it has an absolute error of at most 10−4

with the judges’ data.

Sample Explanation
The blue spymaster has three hint words to choose from (in any case, their team can only make one guess in the turn,
so the choice of K does not matter):

1. If they choose the first, their team has 1/2 probability of guessing “apple” and wins the game, and 1/2 proba-
bility of guessing “java” and ends the turn, which allows the red spymaster to give the third hint word and win.
So the blue team’s winning chance is 1/2 in this case;

2. If they choose the second, their team has 1/2 probability of guessing “apple” and wins the game, and 1/2
probability of guessing “dog” and loses the game. So the blue team’s winning chance is also 1/2;

3. If they choose the third, their team has 1/2 probability of guessing “sleep” and loses the game, and 1/2 proba-
bility of guessing “java” and ends the turn, which allows the red spymaster to give the third hint word and win.
So the blue team’s winning chance is 0 in this case.
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To sum up, the best strategy for the blue spymaster is either (1) or (2) and their winning chance is 1/2.

Sample Input 1 Sample Output 1

4 B
apple sleep java dog
B R I A
3
2 apple java
2 apple dog
2 sleep java

0.5000
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