
38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem A. Bijection
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Consider paths on a plane from (0, 0) to (n, n) consisting of unit steps to the right (“R”) and upwards
(“U”). It is known that the number of distinct such paths is the binomial coefficient

choose(2n, n) =
(2n)!

n! · n!
.

For example, when n = 2, there are six such paths: “RRUU”, “RURU”, “RUUR”, “URRU”, “URUR”, “UURR”.

A string U is a regular bracket sequence if it is an empty string, or a string of the form “(V)”, or a
concatenation of two strings of the form “VW ”, where V and W are regular bracket sequences. Consider
regular bracket sequences containing n pairs of brackets. It is known that the number of distinct such
sequences is the Catalan number which can be calculated, in particular, as follows:

Cn =
1

n+ 1
· choose(2n, n).

For example, when n = 2, there are two such sequences: “(())”, “()()”.

Construct any bijection that reflects this fact. More specifically, given a path of n steps to the right and
n steps upwards, construct a regular bracket sequence containing n pairs of brackets, and additionally
memorize an integer k from 0 to n inclusive. Afterwards, given the sequence and the integer k, restore
the original path.

Interaction Protocol
In this problem, your solution will be run twice on each test.

During the first run, the solution encodes the path. The first line contains the word “path”. The second
line contains an integer n: half of the path length (1 ≤ n ≤ 300). The third line contains a path of 2n
steps: n letters “R” and n letters “U” in some order.

On the first line, print any regular bracket sequence containing n “(” characters and n “)” characters. On
the second line, print any integer k (0 ≤ k ≤ n).

During the second run, the solution restores the path. The first line contains the word “brackets”. The
second line contains an integer n, the same as during the first run: half of the bracket sequence length
(1 ≤ n ≤ 300). The third line contains a regular bracket sequence containing n “(” characters and n “)”
characters. The fourth line contains an integer k (0 ≤ k ≤ n). The sequence and the integer are the ones
printed during the first run.

On the first line, print the restored initial path: n letters “R” and n letters “U” in the same order as in the
input during the first run.

During each run, each line of input including the last one is terminated by a newline.

Problem A Developer: Ivan Kazmenko Page 1 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Examples
On each test, the input during the second run depends on the solution’s output during the first run.

Two runs of some solution on the first test are shown below.

standard input standard output

path

2

RRUU

(())

0

brackets

2

(())

0

RRUU

Two runs of some solution on the second test are shown below.

standard input standard output

path

3

RUURRU

(())()

3

brackets

3

(())()

3

RUURRU

Problem A Developer: Ivan Kazmenko Page 2 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem B. Rectangle Tree
Input file: standard input

Output file: standard output

Time limit: 6 seconds
Memory limit: 512 mebibytes

Mr. Peanutbutter has recently discovered a nice n × n field covered with various crops. Diane told
Mr. Peanutbutter that for generations this particular field is planted with crops using tree-like rectangle
method. While Mr. Peanutbutter got distracted by a bird, Diane continued.

A combinatorial rectangle in the field is a subset of squares of the field of the form A × B where A and
B are subsets of the set {0, . . . , n− 1}.
A rectangle tree is a rooted binary tree with k vertices with the following properties. Each vertex v of the
tree is labeled with a combinatorial rectangle r(v) ⊆ {0, . . . , n−1}×{0, . . . , n−1}. If s is an inner node of
the tree, and c1 and c2 are its direct descendants, then their combinatorial rectangles form a partition of
r(s): formally, r(s) = r(c1)∪ r(c2) and r(c1)∩ r(c2) = ∅. A node cannot have only one direct descendant.

Let Crop(x, y) be the crop that grows on the square (x, y) ∈ {0, . . . , n − 1} × {0, . . . , n − 1}
of the field. A rectangle tree T with the root Root computes the crop types of the field if
r(Root) = {0, . . . , n− 1}× {0, . . . , n− 1} and for each leaf ℓ, the combinatorial rectangle r(ℓ) has exactly
one type of crop growing on it: that is, for any two (x, y), (x′, y′) ∈ r(ℓ), we have Crop(x, y) = Crop(x′, y′).

The depth of tree T is the largest distance between the root of T and a leaf of T . Here, distance stands
for the number of edges in the shortest path between the vertices.

The size of tree T is the number of vertices in it.

You are given a rectangle tree T computing crop types Crop. Let the size of T be S. Construct another
rectangle tree T ′ computing Crop such that its depth is at most 3 log2 S and its size is at most 5S.

Input
The first line contains a single integer n, the size of the field (1 ≤ n ≤ 1000). Each of the next n lines
contain n integers describing the types of the crops. The j-th integer in the i-th row is the type of crop
in the square (i, j). All types are positive integers not exceeding 107.

The next line contains a single integer S, the size of the rectangle tree (1 ≤ S ≤ 10 000, S · n ≤ 106).
The i-th of the next S lines contains the description of the i-th vertex of the tree. It contains several
space-separated integers: p, m1, m2, a1, . . ., am1 , b1, . . ., bm2 . Here, p ∈ {0, 1, . . . , S − 1} is the number of
the parent of vertex i (if i is the root, then p = i), and the combinatorial rectangle corresponding to this
vertex is r(i) = {a1, . . . , am1} × {b1, . . . , bm2}.
It is guaranteed that, if ℓ is a leaf of the tree, then all types of crops in r(ℓ) are the same. Additionally, for
each inner vertex v with direct descendants c1 and c2, the rectangles r(c1) and r(c2) form a partition of r(v):
r(v) = r(c1)∪r(c2) and r(c1)∩r(c2) = ∅. Finally, if i is the root, then r(i) = {0, . . . , n−1}×{0, . . . , n−1}.

Output
Print a tree of depth at most 3 log2 S and of size at most 5S such that it is also a rectangle tree that
computes the given crops. The tree should be printed in the same format as the one given in the input.

Problem B Developer: Artur Riazanov Page 3 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Example
standard input standard output

3

1 1 2

1 1 2

2 2 2

5

0 3 3 0 1 2 0 1 2

0 3 2 0 1 2 0 1

0 3 1 0 1 2 2

1 2 2 0 1 0 1

1 1 2 2 0 1

7

0 3 3 0 1 2 0 1 2

0 1 3 2 0 1 2

1 1 2 2 0 1

1 1 1 2 2

0 2 3 0 1 0 1 2

4 2 1 0 1 2

4 2 2 0 1 0 1

Problem B Developer: Artur Riazanov Page 4 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem C. Integer Cow
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

A cow stands on an infinite plane in integer point (x0, y0). Grass grows in a disk centered in integer point
(xc, yc) with integer radius r, and also on the disk border.

The cow can perform the following command an arbitrary number of times: move from its current integer
point (x1, y1) to integer point (x2, y2). The time to perform such command is equal to the Euclidean
distance between the points. The two points may coincide.

Find a sequence of commands which will bring the cow to an integer point with grass in minimum possible
time.

Input
The first line contains an integer t, the number of test cases (1 ≤ t ≤ 100). The next t lines contain test
cases, one per line. Each test case is defined by five integers xc, yc, r, x0, y0: the coordinates of the grass
disk’s center, its radius, and the initial coordinates of the cow (−109 ≤ xc, yc, x0, y0 ≤ 109, 1 ≤ r ≤ 109).

Output
For each test case, print two lines. On the first one, print an integer k, the number of commands
(0 ≤ k ≤ 1 000 000). On the second line, print 2(k + 1) integers, the cow’s path: x0 y0 . . . xk yk. If
there are several optimal sequences, print any one of them.

Example
standard input standard output

3

1 2 1 1 2

3 2 5 -10 3

0 0 1 10 0

0

1 2

1

-10 3 -2 2

3

10 0 5 0 5 0 1 0

Explanation
The picture corresponds to the second test case.

Problem C Developer: Anton Maydell Page 5 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem D. Lost in Transfer
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Dima has a set of n numbers. Dima wants to transmit this set to Katya. He takes numbers from the set,
one by one, in any order he pleases, and enters them into the transmitter.

Katya receives numbers from the receiver in the order in which Dima enters them. However, the
transmission channel is not ideal, so one of the numbers could have been lost in transfer. Nevertheless, it
is very important for Katya to exactly reconstruct the set that Dima wanted to transmit.

Help Dima and Katya agree in advance how they transmit numbers so that Katya can always reconstruct
Dima’s set, even if one of its elements was lost in transfer.

Interaction Protocol
In this problem, your solution will be run twice on each test. Each test consists of separate test cases.
Both in input and in output, adjacent numbers on a line are separated by spaces.

During the first run, the solution transmits sets as Dima. The first line contains the word “transmit”. The
second line contains an integer t, the number of test cases (1 ≤ t ≤ 1000). Each of the next t lines describes
a single test case. Such line starts with an integer n, the number of elements in the set (20 ≤ n ≤ 100).
Then follow n pairwise distinct integers a1, a2, . . . , an, the elements of the set (1 ≤ ai ≤ 500).

Print t lines, one for each test case. On each line, print the respective integers a1, a2, . . . , an, each of them
exactly once, in any order you like.

During the second run, the solution reconstructs sets as Katya. The first line contains the word “recover”.
The second line contains an integer t, the number of test cases, same as during the first run (1 ≤ t ≤ 1000).
Each of the next t lines describes a single test case. Such line starts with an integer m, the number of
integers received by Katya (19 ≤ m ≤ 100). Then follow m pairwise distinct integers b1, b2, . . . , bm, the
integers received by Katya themselves. These are the integers sent by Dima during the first run, given in
the order of transmission. However, one of the integers might be omitted (and then m is one less than the
respective n during the first run).

Print t lines, one for each test case. On each line, print the integers a1, a2, . . . , an from the respective test
case, each of them exactly once, in any order you like.

Note
In this problem, the tests are generated using a pseudorandom number generator. In each test, the number
of test cases t and the size of the set n in each test case are chosen in advance. After that, each set of size
n is selected randomly with equal probability among all possible sets of size n consisting of integers from
1 to 500. The elements of the set are given in random order.

Additionally, in each test case, it is decided in advance which number will be lost in transfer. For a set
of size n, a position p is selected randomly with equal probability among all possible integers from 1 to
n + 1. If p ≤ n, it means that p-th printed number will be lost. When p = n + 1, every number will be
transmitted successfully.

Problem D Developer: Ivan Kazmenko Page 6 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Example
On each test, the input during the second run depends on the solution’s output during the first run. Two
runs of some solution on the first test are shown below.

standard input

transmit

2

20 97 388 459 467 32 99 98 296 403 325 330 271 87 333 378 267 405 58 426 374

20 125 481 451 150 495 136 444 192 118 26 68 281 120 61 494 339 86 292 100 32

standard output

405 97 87 58 374 98 271 296 330 267 99 32 378 333 325 467 388 403 459 426

494 68 481 61 120 125 281 444 150 86 339 26 32 118 451 136 495 100 292 192

standard input

recover

2

19 97 87 58 374 98 271 296 330 267 99 32 378 333 325 467 388 403 459 426

20 494 68 481 61 120 125 281 444 150 86 339 26 32 118 451 136 495 100 292 192

standard output

97 87 58 374 98 271 296 330 267 99 32 378 333 325 467 388 403 459 426 405

494 68 481 61 120 125 281 444 150 86 339 26 32 118 451 136 495 100 292 192

Problem D Developer: Ivan Kazmenko Page 7 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem E. Maze with a Hint
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

This is an interactive problem.

Thor had boasted to dwarves that he can go through any maze without a single drop of sorcery, using
only a small torch. The dwarves decided to give Thor a trial. They are fast and skilled builders, and their
new maze will be large and tricky. If an adventurer walks inside for too long, the torch will go out, and
the dwarves will laugh at the Ace. After taking a look on the new construction, Thor decided that he has
to win, no matter the price, and asked Loki for help.

Loki is a resourceful trickster, and he will be able to obtain the map of the maze as soon as it is finished.
But he won’t be able to just give the map to Thor: the dwarves will surely see through such deception.
Thor can only get a short hint from Loki...

Help Thor and Loki to prepare for passing the hint, so that Thor would then be able to pass the maze
before the torch goes out.

Maze structure
The maze which is being built by dwarves can be drawn as a square board consisting of n × n
squares. Between each two squares adjacent horizontally or vertically, there is either a passage or a
wall. Additionally, the whole maze is surrounded by a wall. The entrance is in the bottom left square, and
the exit is in the top right square.

The dwarves build walls as follows. They consider all possible positions for the walls inside the maze in
random order, each position exactly once. In each such position, they erect a wall if after that, it is still
possible to move from every square of the maze to every other square.

In text form, the maze is given by 2n + 1 lines, each containing 2n + 1 characters. The even rows and
columns, if counted from one, correspond to squares, and the odd ones to the walls between them. The
“.” character corresponds to a square or a passage, and the “#” character to a wall or a joint between
walls. In particular, a character in an even row and an even column is always a dot (it’s a square), and a
character in an odd row and an odd column is always a hash (it’s a joint between walls).

A map of a 5 × 5 maze using the described notation can be seen in the example below. Additionally, to
make local testing easier, you can download all mazes from tests with odd numbers. They can be found
under “Samples ZIP” in the testing system interface.

Interaction Protocol
In this problem, your solution will be run twice on each test.

During the first run, the solution obtains a map and writes the hint as Loki. The first line contains the
word “view”. The second line contains an integer n, the size of the maze (5 ≤ n ≤ 200). Each of the next
2n+ 1 lines contains 2n+ 1 characters. Together these lines constitute the map of the maze.

The solution has to print one line: the hint that Loki will send to Thor. This hint has to be composed
from digits 0 and 1 and have length from 0 to 1000 characters.

During the second run, the solution obtains the hint and walks through the maze as Thor. This run is
interactive. The first line contains the word “walk”. The second line contains the hint given by Loki to
Thor: the one printed by the solution during the first run. The third line contains the integer n, the size
of the maze, same as during the first run.

After that, the solution will get a piece of the map seen by Thor with the help of his torch, and in response,
it should print the direction of his next step. Each piece of the map is given as three lines containing three
characters each: the square of the maze where Thor is, along with its surroundings.

Problem E Developer: Ivan Kazmenko Page 8 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

If the solution is sure that Thor passed the maze and stands at the exit, the solution should simply
terminate gracefully. Otherwise, it has to print a line containing the direction of Thor’s next step: “N”
for a step to the North (up on the map), “W” for a step to the West (left on the map), “S” for a step to
the South (down on the map), or “E” for a step to the East (right on the map). After that, the solution
should flush the output buffer: this can be done by calling, for example, fflush (stdout) in C or C++,
System.out.flush () in Java, or sys.stdout.flush () in Python.

If the passage is clear, Thor moves to an adjacent square in the requested direction and is given the next
piece of the map seen by him at the moment. If there is a wall in the given direction, the process is
terminated with “Wrong Answer” outcome.

The solution passes the maze if it terminated gracefully when Thor stood at the exit, and made at most
6000 steps before that.

Example
On each test, the input during the second run depends on the solution’s output during the first run. In
the example, We will consider solution which forms the hint by simply printing the required sequence of
steps: 0 for a step to the East and 1 for a step to the North. Sure enough, this solution does not always
work.

Two runs of this solution on the first test are shown below. In the second run, blank lines are added to
show the sequence of events.

Problem E Developer: Ivan Kazmenko Page 9 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

standard input standard output

view

5

###########

#.#.......#

#.###.#####

#.#.....#.#

#.#.###.#.#

#...#.....#

###.#######

#.........#

###.#######

#.........#

###########

10001011

walk

10001011

5

###

#..

###

#.#

...

###

#.#

...

#.#

#.#

..#

#.#

###

#..

#.#

#.#

...

###

###

...

#.#

###

...

###

###

..#

###

E

N

N

N

E

N

E

E

Problem E Developer: Ivan Kazmenko Page 10 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem F. Maharajas are Going Home
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Jack and Jill have a chessboard which is infinite upwards and to the right. Rows and columns are numbered
by integers from 1 to infinity. They play the following game on the chessboard. Initially, there are k stones
on the chessboard. During their move, a player takes a single stone and moves it one or more positions
to the left, downwards, diagonally (the same number of positions to the left and downwards), or using a
knight’s move that reduces the row and column numbers (one position downwards and two to the left, or
two positions downwards and one to the left). The stone must not leave the chessboard, but may jump
over other stones or occupy the same position as other stones. The player who can not make a move loses.
Jack and Jill move in turns, Jack moves first.

Help Jack find a winning move, or determine that there exists a winning strategy for Jill.

Input
The first line contains an integer t, the number of test cases (1 ≤ t ≤ 100).

Each test case spans several lines. The first of them contains an integer k: the number of stones in the initial
position (1 ≤ k ≤ 10). The next k lines determine the initial positions of the stones, one per line. Each
position is given by two integers r and c: the numbers of row and column respectively (1 ≤ r, c ≤ 2000).

Output
For each test case, print a line containing three space-separated integers: i, r, and c. They mean that,
when both players play optimally, Jack’s winning move is to move i-th stone to position (r, c). The stones
are numbered starting from 1.

If there are several possible solutions, print the lexicographically smallest one: the solution with the
minimum number of stone, in case of ambiguity the solution with the minimum row number, in case of
ambiguity the solution with the minimum column number.

If Jack does not have a winning strategy, print “-1 -1 -1” (without quotes).

Example
standard input standard output

3

5

2 3

3 2

3 3

3 3

3 3

1

2 4

2

1 1

3 2

3 1 1

-1 -1 -1

2 1 1

Problem F Developer: Anton Maydell Page 11 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem G. Ook
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

The librarian has a ticket with a string consisting of letters “o” and “k”. Additionally, he has a pattern
from the grocery store. The pattern contains a string which consists of characters “o”, “k”, and “?”.

The librarian can perform an arbitrary number of any of the following operations in any order:

1. Put the pattern onto the ticket and cut the respective piece of the ticket: the number of letters on
the piece has to be equal to the number of characters in the pattern. The remaining parts of the
ticket can be used to cut more pieces, but only separately (they are not glued together). Any or
both remaining parts can contain no more letters (in that case, obviously, the pattern can not be
put onto them).

2. Take a piece of the ticket obtained by the first operation to the grocery store and exchange it for
bananas.

When exchanging a piece of the ticket for bananas, the shopkeeper acts as follows. He starts by putting
bananas into a heap. Initially, the heap is empty. The shopkeeper looks over the piece of the ticket, from
left to right. For every letter “o” on it, he adds o bananas to the heap, and for every letter “k”, he adds k
bananas.

After that, the shopkeeper compares two strings from left to right, character by character: the one on the
pattern and the one on the piece of the ticket. During the comparison, a “?” character in the pattern is
considered equal to any letter. If the shopkeeper discovers a mismatch in a certain position, he gets very
angry, and because of that, his hunger intensifies. As a result, he divides the heap into two parts such
that the difference in the number of bananas is at most one, and then eats the part which is not less than
the other. After that, the shopkeeper continues comparing the strings until either he compares the last
pair of characters or the heap of bananas becomes empty.

All bananas left in the heap after comparison are given to the librarian in exchange for the part of the
ticket.

Find the maximum possible number of bananas the librarian can obtain.

Input
The first line contains two integers o and k (0 ≤ o, k ≤ 5000). The second line contains a string S consisting
of letters “o” and “k”: the one printed on the ticket. The third line contains a string P consisting of
characters “o”, “k”, and “?”: the one printed on the pattern. It is guaranteed that 1 ≤ |P | ≤ |S| ≤ 250 000.

Output
Print the maximum possible number of bananas the librarian can obtain.

Problem G Developer: Anton Maydell Page 12 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Examples
standard input standard output

2 1

ookookook

koo

10

1 3

koooooook

?

13

1000 0

kookoo

ook

2000

21 1

ooo

kkk

7

Problem G Developer: Anton Maydell Page 13 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem H. Pi Approximation
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Vasya has a robot which can calculate the number of distinct right triangles that can be constructed
from a given collection of sticks: one can take three sticks and use them as three sides of a triangle.
Unfortunately, the robot can distinguish only angles of a triangle and does not distinguish its sides. So,
the robot’s calculations assume that similar triangles are equal. Two triangles are similar if one can be
obtained from the other using uniform scaling, translation, rotation, and reflection.

Vasya’s friend Petya discovered an amazing fact. If the robot is given n sticks with integer lengths from
1 to n, and the result of the robot’s calculations is then divided by n, the number we obtain is a good
approximation for the irrational number 1

2π .

Vasya used the idea proposed by Petya for all integers n from nmin to nmax inclusive, and wrote down the
results. Time has passed, and Vasya lost the results of the experiment, while his robot broke. Help him
to once again find the best approximation of π that can be obtained if we use the idea for all integers n
from nmin to nmax. Here, x is a better approximation to π than y if |π − x| < |π − y|.

Input
The first line contains an integer t, the number of test cases (1 ≤ t ≤ 100). The next t
lines contain test cases, one per line. Each test case is denoted by two integers nmin and nmax

(5 ≤ nmin ≤ nmax ≤ 200 000 000, nmax − nmin < 100).

Output
For each test case, print a line containing a reduced fraction which is the best approximation of π that
could be found using Petya’s idea. Separate numerator, the division sign, and divisor by spaces.

Example
standard input standard output

5

5 6

5 13

14 17

91 100

99999901 100000000

3 / 1

13 / 4

17 / 6

47 / 15

99999967 / 31830978

Explanation
In the third test case, among four approximations {7

2 ,
15
4 , 4,

17
6 }, fraction 17

6 is the best one because its
value is closest to π.

Problem H Developer: Anton Maydell Page 14 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem I. Partition of Queries
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Richard Roe has just implemented a brand new data structure S. It is able to perform only two operations:
“add” and “query”.

• “add” adds one item to S. You can assume that this operation takes zero seconds.

• “query” makes some request to S. This operation takes x seconds, where x equals to the number of
previously added items.

Other details related to these operations are not important for this problem.

Suddenly Richard understood that he can optimize this structure by rebuilding it from time to time. So
he implemented a new function named “rebuild”. This new function works as follows: when “rebuild”
is called, S “forgets” about items added before rebuilding. More precisely, after adding this operation:

• “add” adds one item to S and takes zero seconds.

• “query” makes some request to S and takes x seconds, where x equals to the number of items added
after the last call of “rebuild” (here, assume that a “rebuild” was also called before all queries).

• “rebuild” takes y seconds.

You are given a sequence of “add” and “query” operations with S.

Your task is to insert “rebuild” operations in some positions in such a way that the number of seconds
all operations will take is minimized.

Input
The first line of input contains two space-separated integers n and y (1 ≤ n ≤ 106, 0 ≤ y ≤ 106).

The second line contains one string q of length n. Each character in q is either “+” or “?” (without quotes).
Here, “+” means one call of “add”, and “?” means one call of “query”. These operations are performed
according to the order in q.

Output
Output a single integer t: the minimum total time in seconds it will take for S to process all queries after
possibly adding some calls of “rebuild”.

Examples
standard input standard output

6 5

++??+?

6

6 8

++??+?

7

5 1

+++++

0

Explanations
In the first example, the most optimal way is to place “rebuild” before the first “?”.

Problem I Developer: Aleksandr Logunov Page 15 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

In the second example, no placing of “rebuild” operations can decrease the total time.

In the third example, you also cannot decrease the total time because there are no “query” operations at
all.

Problem I Developer: Aleksandr Logunov Page 16 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem J. Random Chess Game
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

This is an interactive problem.

One a boring Tuesday evening, Jack and Jill decided to play a game of chess. Since Jack is a very mediocre
chessplayer, Jill promised to play random moves on her turns. Formally, if on Jill’s turn, there are n legal
moves, then Jill will choose each move with probability 1/n. Also, Jill likes black color very much. So, she
played all games with black pieces. After losing several games, Jack asked you to write a program which
will help him to beat Jill’s random strategy.

Chess rules
This section is based on the Wikipedia article about chess.

Chess game pieces are divided into white and black sets. Each set consists of 16 pieces: one king, one
queen, two rooks, two bishops, two knights, and eight pawns. The game is played on a square board of
eight rows and eight columns. The 64 squares alternate in color and are referred to as light and dark
squares. The chessboard is placed with a light square at the right-hand corner nearest to each player.
Thus, each queen starts on a square of its own color (the white queen on a light square; the black queen
on a dark square).

White moves first, after which players alternate turns, moving one piece per turn (except for castling,
when two pieces are moved). A piece is moved to either an unoccupied square or one occupied by an
opponent’s piece, which is captured and removed from play. With the sole exception of en passant, all
pieces capture by moving to the square that the opponent’s piece occupies. Moving is compulsory, it is
illegal to skip a turn. A player may not make any move that would put or leave the player’s own king in
check. If the player to move has no legal move, the game is over; the result is either checkmate (a loss for
the player with no legal move) if the king is in check, or stalemate (a draw) if the king is not. Each piece
has its own way of moving:

• The king moves one square in any direction. The king also has a special move called castling that
involves also moving a rook.

• A rook can move any number of squares along a rank or file, but cannot leap over other pieces.
Along with the king, a rook is involved during the king’s castling move.

• A bishop can move any number of squares diagonally, but cannot leap over other pieces.

• The queen combines the power of a rook and bishop and can move any number of squares along a
rank, file, or diagonal, but cannot leap over other pieces.

• A knight moves to any of the closest squares that are not on the same rank, file, or diagonal. (Thus
the move forms an L-shape: two squares vertically and one square horizontally, or two squares
horizontally and one square vertically.) The knight is the only piece that can leap over other pieces.

• A pawn can move forward to the unoccupied square immediately in front of it on the same file, or on
its first move it can advance two squares along the same file, provided both squares are unoccupied.
A pawn can capture an opponent’s piece on a square diagonally in front of it on an adjacent file, by
moving to that square. A pawn has two special moves: the en passant capture and promotion.

Once in every game, each king can make a special move, known as castling. Castling consists of moving
the king two squares along the first rank toward a rook that is on the player’s first rank and then placing
the rook on the last square that the king just crossed. Castling is permissible if the following conditions
are met:

Problem J Developer: Anton Maydell Page 17 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

• Neither the king nor the rook has previously moved during the game.

• There are no pieces between the king and the rook.

• The king cannot be in check, nor can the king pass through any square that is under attack by an
enemy piece, or move to a square that would result in check. (Note that castling is permitted if the
rook is under attack, or if the rook crosses an attacked square.)

When a pawn makes a two-step advance from its starting position and there is an opponent’s pawn on
a square next to the destination square on an adjacent file, then the opponent’s pawn can capture it en
passant (“in passing”), moving to the square the pawn passed over. This can be done only on the very
next turn; otherwise the right to do so is forfeited.

When a pawn advances to the eighth rank, as a part of the move it is promoted and must be exchanged
for the player’s choice of queen, rook, bishop, or knight of the same color. Usually, the pawn is chosen to
be promoted to a queen, but in some cases another piece is chosen; this is called underpromotion. There
is no restriction on the piece promoted to, so it is possible to have more pieces of the same type than at
the start of the game (for example, two or more queens).

When a king is under immediate attack by one or two of the opponent’s pieces, it is said to be in check.
A move in response to a check is legal only if it results in a position where the king is no longer in check.
This can involve capturing the checking piece; interposing a piece between the checking piece and the king
(which is possible only if the attacking piece is a queen, rook, or bishop and there is a square between it
and the king); or moving the king to a square where it is not under attack. Castling is not a permissible
response to a check.

The object of the game is to checkmate the opponent; this occurs when the opponent’s king is in check,
and there is no legal way to remove it from attack. It is never legal for a player to make a move that puts
or leaves the player’s own king in check.

There are several ways games can end in a draw:

• Stalemate: The player whose turn it is to move has no legal move and is not in check.

• Threefold repetition: This most commonly occurs when neither side is able to avoid repeating moves
without incurring a disadvantage. In this situation, either player can claim a draw. The three
occurrences of the position need not occur on consecutive moves for a claim to be valid. Two
positions are considered same or equal if all occupied squares and kind of pieces (not necessarily the
same piece) they occupy are the same, the castling rights for both sides did not change, and no en
passant capture was possible during the first occurrence, even if obviously not played.

• Fifty-move rule: If during the previous 50 moves (100 half-moves) no pawn has been moved and no
capture has been made, either player can claim a draw. A half-move is a turn by either White or
Black.

In this problem we assume that both players claim a draw whenever it is possible.

Standard Algebraic Notation (SAN)
This section is based on the Wikipedia article about algebraic notation in chess.

Each square of the chessboard is identified by a unique coordinate pair: a letter and a number. The vertical
columns of squares, called files, are labeled a through h from White’s left (the queenside) to right (the
kingside). The horizontal rows of squares, called ranks, are numbered 1 to 8 starting from White’s side of
the board. Thus each square has a unique identification of file letter followed by rank number.

Each piece type (other than pawns) is identified by an uppercase letter (K for king, Q for queen, R for rook,
B for bishop, and N for knight). Pawns are not identified by uppercase letters, but rather by the absence
of one. Distinguishing between pawns is not necessary for recording moves, since only one pawn can move
to a given square.

Problem J Developer: Anton Maydell Page 18 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Each move of a piece is indicated by the piece’s uppercase letter, plus the coordinate of the destination
square. For example, Qg4 (move a queen to g4). For pawn moves, a letter indicating pawn is not used,
only the destination square is given. For example, e4 (move a pawn to e4).

When a piece makes a capture, an x is inserted immediately before the destination square. For example,
Bxa6 (bishop captures the piece on a6). When a pawn makes a capture, the file from which the pawn
departed is used to identify the pawn. For example, fxe7 (pawn on the f -file captures the piece on e7).
En passant captures are indicated by specifying the capturing pawn’s file of departure, the x, and the
destination square (not the square of the captured pawn). For example, exf6 (pawn on the e-file captures
the pawn on f5).

When two (or more) identical pieces can move to the same square, the moving piece is uniquely identified
by specifying the piece’s letter, followed by (in descending order of preference):

1. the file of departure (if they differ), for example, Nbc3,

2. the rank of departure (if the files are the same but the ranks differ),

3. both the file and rank (if neither alone is sufficient to identify the piece, which occurs only in rare
cases where one or more pawns have promoted, resulting in a player having three or more identical
pieces able to reach the same square).

As above, an x can be inserted to indicate a capture. For example, N1xc3 (white knight on b1 captures
black piece on c3 when another white knight is located on b5).

When a pawn moves to the last rank and promotes, an equals sign and the piece promoted to is indicated
at the end of the move notation, for example: h8=R (promoting to rook).

Castling is indicated by the special notations O-O (for kingside castling) and O-O-O (queenside castling).
Note that uppercase letter O is used.

A move that places the opponent’s king in check has the character + appended. If check is also a mate
then the character + is replaced by the character #.

Interaction Protocol
Each line of input describes one input command. Each command consists of command type and command
argument separated by a colon and a single space. There are three different types of input commands:

black_move: <last-black-move>
white_moves: <move-list>
result: <verdict>

The game starts with a white_moves command listing the initially possible moves: <move-list> is a
space-separated list of legal white moves in some order.

On each turn, your program should choose one legal move for White from the given move-list and output
it on a single line.

After that, if the game has ended after your program’s move, the result command is sent. Otherwise,
a black_move command is sent describing the Black move (recall that it is chosen uniformly at random
from all legal moves).

After that, if the game has ended after the Black move, the result command is sent. Otherwise, a
white_moves command is sent again, listing all currently available moves in some order, and then it is
your program’s turn again.

Your program should terminate after receiving the result command. There are six different types of
verdict (game termination status):

<verdict> result <verdict> result
White won by checkmate OK Illegal move PE
Game drawn by stalemate WA Game drawn by repetition WA
Game drawn by fifty-move rule WA Black won by checkmate WA

Problem J Developer: Anton Maydell Page 19 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

After printing each line, flush the output buffer, or you will get the outcome Idleness Limit Exceeded:
this can be done by calling, for example, fflush (stdout) in C or C++, System.out.flush () in Java,
or sys.stdout.flush () in Python.

There are 150 different tests. In each test, the initial state of pseudorandom generator used to generate
the moves is fixed in advance. Test 1 corresponds to the example.

Example
standard input standard output

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 e3 e4 f3 f4 g3 g4 h3 h4 Nh3 Na3 Nc3

←Nf3

black_move: c5

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 g4 h3 h4 e5 Bc4 Nc3 Ba6 Qh5

←Nf3 Ke2 Na3 Bb5 Qe2 Ne2 Nh3 Bd3 Be2 Qf3 Qg4

black_move: Na6

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 g4 h3 h4 e6 Bc4 Nc3 Bxa6 Qh5

←Nf3 Ke2 Na3 Bb5 Qe2 Ne2 Nh3 Bd3 Be2 Qf3 Qg4

black_move: g5

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 g4 h3 h4 e6 Bc4 Nc3 Qh5 Be2

←Ke2 Na3 Bb5 Kf1 Qe2 Ne2 Nh3 Bd3 Bf1 Bxb7 Nf3 Qf3 Qg4

black_move: f5

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 h3 h4 e6 exf6 Nc3 Qa4 Qd4

←Qe2 Ne2 Qf3 Qb4 Qxg5 Na3 Qf4 Qc4 Kf1 Qd1 Qg3 Qh5# Qxf5 Bb5 Qe4 Bd3 Qh4 Bf1

←Be2 Qh3 Ke2 Nh3 Kd1 Bxb7 Nf3 Bc4

black_move: b5

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 h3 h4 fxe7 f7+ Nc3 Qa4 Qd4

←Qe2 Ne2 Qf3 Qb4 Qxg5 Na3 Qf4 Qc4 Kf1 Qe6 Qd1 Qg3 Qh5# Qf5 Bxb5 Qe4 Qxd7+

←Qh4 Bxc8 Qh3 Ke2 Nh3 Kd1 Bb7 Nf3

black_move: Rb8

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 h3 h4 fxe7 f7+ O-O Nbc3 Nec3

←Qa4 Qd4 Nd4 Qf3 Qb4 Rg1 Qxg5 Na3 Qf4 Qc4 Kf1 Ng1 Qe6 Qg3 Qh5# Qf5 Bxb5 Ng3

←Qe4 Rf1 Qxd7+ Qh4 Bxc8 Qh3 Nf4 Kd1 Bb7

result: White won by checkmate

e4

e5

Bxa6

Qg4

exf6

Ne2

Qh5#

The “←” characters and blank lines were inserted into example to enhance readability. Real input doesn’t
contain such characters, and there are no empty lines in the input.

Problem J Developer: Anton Maydell Page 20 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Explanation
In the example above, you could see an en passant capture (5. exf6). Also, on white move 7, there are
examples of disambiguating moves (Nbc3 and Nec3) and castling move (O-O).

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

8 rmblkans
7 opZpopop
6 0Z0Z0Z0Z
5 Z0o0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

8 rmblkans
7 opZpopop
6 0Z0Z0Z0Z
5 Z0o0O0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

1. e4 1... c5 2. e5 2... Na6

8 rZblkans
7 opZpopop
6 nZ0Z0Z0Z
5 Z0o0O0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

8 rZblkans
7 opZpopop
6 BZ0Z0Z0Z
5 Z0o0O0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJ0MR

a b c d e f g h

8 rZblkans
7 opZpopZp
6 BZ0Z0Z0Z
5 Z0o0O0o0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJ0MR

a b c d e f g h

8 rZblkans
7 opZpopZp
6 BZ0Z0Z0Z
5 Z0o0O0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

3. Bxa6 3... g5 4. Qg4 4... f5

8 rZblkans
7 opZpo0Zp
6 BZ0Z0Z0Z
5 Z0o0Opo0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

8 rZblkans
7 opZpo0Zp
6 BZ0Z0O0Z
5 Z0o0Z0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

8 rZblkans
7 o0Zpo0Zp
6 BZ0Z0O0Z
5 Zpo0Z0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

8 rZblkans
7 o0Zpo0Zp
6 BZ0Z0O0Z
5 Zpo0Z0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPONOPO
1 SNA0J0ZR

a b c d e f g h

5. exf6 5... b5 6. Ne2 6...Rb8

8 0sblkans
7 o0Zpo0Zp
6 BZ0Z0O0Z
5 Zpo0Z0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPONOPO
1 SNA0J0ZR

a b c d e f g h

8 0sblkans
7 o0Zpo0Zp
6 BZ0Z0O0Z
5 Zpo0Z0oQ
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPONOPO
1 SNA0J0ZR

a b c d e f g h

7. Qh5#

Problem J Developer: Anton Maydell Page 21 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem K. What? Subtasks? Again?
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Vasya conducts programming contests. A total of n participants have registered for the upcoming round.
Unfortunately, the testing system is stable only when the number of participants is at most m. If nothing
is done, the contest will most probably have issues, and the round will become unrated.

Vasya doesn’t have time to buy more servers or rewrite the testing system in another programming
language for a performance gain. Nevertheless, he can enable features which some of the participants
don’t like at all, to the point that they will not take part in the contest. In particular, Vasya can:

1. disable HTTPS connections

2. postpone the round by 10 minutes

3. set the time limits in all problems to 100 milliseconds

4. divide problems into subtasks

5. honestly announce that the round will quite possibly be unrated

Help Vasya find a set of features which will allow him to conduct a contest without issues for the maximum
possible number of participants.

Input
The first line contains three integers, n, m, and k (1 < m < n ≤ 100 000, 0 ≤ k ≤ 100 000). The next k
lines contain pairs of integers ci (1 ≤ ci ≤ n) and fi (1 ≤ fi ≤ 5) which mean that participant ci will not
take part in the contest if Vasya enables feature numbered fi. Some of the pairs (ci, fi) can be equal.

Output
If it is not possible to have a contest without problems with at most m participants, print the phrase
“Round will be unrated” (without quotes). Otherwise, print one integer: the maximum possible number
of participants a rated contest can have.

Problem K Developer: Anton Maydell Page 22 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Examples
standard input standard output

10 7 10

2 1

3 5

2 1

4 1

9 5

5 4

6 4

7 4

8 4

10 4

6

10 9 0 Round will be unrated

5 4 3

4 1

4 2

1 2

4

2 1 2

1 1

2 1

0

Explanations
In the first example, the optimal strategy for Vasya is to enable the first and the fifth features. Then
participants 2, 3, 4, and 9 will not take part in the contest.

In the third example, the optimal strategy for Vasya is to enable the first feature. Then participant 4 will
not take part in the contest.

Problem K Developer: Anton Maydell Page 23 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem L. The Five Bishops
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

This is an interactive problem.

There are five White Bishops and one Black King on an infinite chessboard. You are playing White.
Your task is to checkmate or stalemate the King or to determine whether the King could avoid the
checkmate or stalemate. White moves first.

You will be given 50 moves to do that. If after 50-th move of White side, the King is still not
checkmated/stalemated, the answer will be considered incorrect.

The initial coordinates of pieces will be not greater than 106 by an absolute value. During the game, all
coordinates must not exceed 109 by an absolute value.

Interaction Protocol
The first line of the input will contain only one single integer t, the number of problem instances to solve
(1 ≤ t ≤ 1000).

Each instance starts with six pairs of integers xi and yi on a single line: the first five are coordinates of
Bishops, the last pair is the coordinates of the King. All these integers do not exceed 106 by an absolute
value.

Then the game starts. Your move consists of four integers x1 y1 x2 y2 on a single line: the initial and
final coordinates of a Bishop. The interactor responds with four integers x1 y1 x2 y2 on a single line:
the initial and final coordinates of the King. When the King is checkmated/stalemated, the interactor
responds with four zeros, followed by the next problem instance if there is one. If your program decides
that there is no way to checkmate/stalemate the King, it must output four zeros instead of the first
move, in this case the interactor immediately responds with the next problem instance if there is one. The
coordinates of moving pieces must not exceed 109 by an absolute value.

See sample interaction for more details.

If the checkmate/stalemate is possible, your program must do it in no more than 50 moves, otherwise the
answer will be considered invalid (remember fifty-move rule). You don’t need to find the optimal solution,
but it is guaranteed that in every case where the solution exists it is possible to achieve the goal in no
more than 50 moves.

If the checkmate/stalemate is not possible, your program should immediately respond with the line of
four zeros (no moves allowed), otherwise the answer will be considered incorrect.

It is always guaranteed that every problem instance is correct, that is, no two pieces occupy the same cell
and the King is not in check.

After each printed line, flush the output buffer: this can be done by calling, for example, fflush (stdout)

in C or C++, System.out.flush () in Java, or sys.stdout.flush () in Python.

Problem L Developer: Andrei Lopatin Page 24 of 25

38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Example
standard input standard output

4

1 1 2 2 3 3 4 4 5 5 7 5

1 1 1 2 1 4 1 5 2 2 3 5

0 0 0 0

1 2 2 3 4 5 5 6 6 7 5 3

3 2 4 2 3 6 4 6 6 4 3 4

0 0 0 0

0 0 0 0

2 2 1 3

0 0 0 0

6 4 5 5

Explanation
Empty lines are added only to show the sequence of events.

In the first and third test cases there are five same-color bishops. In the second test case the checkmate
could be achieved in one move. In the fourth case the stalemate could be achieved in one move.

Problem L Developer: Andrei Lopatin Page 25 of 25

