
Day 5. Jagiellonian U Contest
Russia, Petrozavodsk,

Problem A. Bags of Candies
If we make k pairs while packing n flavors, and pack remaining n− 2 ∗ k flavors separately, then number
of bags is equal to (n+2 ∗k)+k = n−k. So, we can get the minimum number of bags making maximum
number of pairs.

Let D(n) be a set containing every prime number strictly greater than n
2 and not greater that n, and

additional number 1. We can notice, that no number from the D(n) can be paired, so the upper bound
of number of pairs is bn−|D(n)|

2 c.
Let’s show, that the mentioned constraint can be reached. We should pair all the numbers from
R(n) = {1, . . . , n} \D(n), maybe with the exception of one number (if the |R(n)| is odd).
Let f(x) for x ≥ 2 be the largest prime divisor of x. Let’s split the numbers from R(n) in groups by the
value f(x).

We can notice, that for every group of that division, if the f(x) corresponds to the group, then there is a
2 ∗ f(x) in that group. Every two numbers from the group can be paired, so let’s pair all the numbers, if
the size of group is even, or leave number 2 ∗ f(x) unpaired if the size of group is odd. So we are left with
some 2 ∗ f(x) from odd-sized groups, and we can make pairs from them. That was the proof, that we can
pair all the numbers from R(n) with the exception of maximum one.

How do we count |D(n)| ? It can be counted using function π(n), which means number of primes not
greater that n (|D(n)| = π(n) − π(bn2 c)). We can find prime numbers from 1 to

√
n in O(

√
n log log n).

Now we can compute number of prime numbers in segment [l, r] in O((r − l) log log(r − l) +
√
r) using

modification of Eratosthenes sieve: for every prime number p not greater than r, mark every multiple of
p in segment [l, r]. In the end, not marked number are prime.

In our problem n ≤ 1011, so let’s do preprocessing. For every 0 ≤ d < 104 get the number of prime
numbers in segment [d ∗ 107, (d+1) ∗ 107− 1] with mentioned algorithm. Do this computations locally (it
takes a few minutes).

So, to compute π(n), we already have number of primes in blocks, that are fully inside the segment [1, n],
and maybe segment in form of [d ∗ 107, n], which we can compute using our algorithm.

Finally, our solution requires time O(n log logn) locally, and O(nb log log n +
√
n), where b is number of

blocks (in our case 104).

Problem B. Binomial
Theorem 0.1 (Lucas) For non-negative integers m and n and a prime p, the following congruence
relation holds: (

n
k

)
≡

m∏
i=0

(
ni

ki

)
(mod p)

where:

n = n0 · p0 + n1 · p1 + . . .+ nm · pm

and

k = k0 · p0 + k1 · p1 + . . .+ km · pm

are the base p expansions of m and n respectively.

Using this theorem it’s easy to see that
(
n
k

)
is odd if n is a supermask of k. Let’s assume that

max{a1, . . . , an} < 2w for some w. For each ai we want to find the number of its submasks in the
sequence. It’s easy to do in O(2w · w) using Sum over Subsets(SOS) DP.

The total complexity is O(MAX logMAX), where MAX is the maximum number in the array.

Page 1 of 5

Day 5. Jagiellonian U Contest
Russia, Petrozavodsk,

Problem C. Bookface
First, let’s sort the sequence xi; from now on we assume x1 ≤ x2 ≤ . . . ≤ xn. We can imagine that the xi
values are points on a line, which we want to move so that no two are closer than d. Note that for any i,
the i-th point is to the left of the (i + 1)-th point, and it is suboptimal for them to ”swap”, so we can
assume the relative order of points will not change, and only enforce the condition that xi+1−xi ≥ d must
hold for any i. Since xi’s must remain non-negative, we cannot shift our points below 0. It is convenient
to remove this condition; for example, by adding the values −d,−2d,−3d, . . . ,−(n+ 1)d to the input
sequence xi. Then, it will never be optimal to move any of the original values to negative, and we can
forget the xi ≥ 0 condition from now on. Now let’s define x′i = xi − i · d; note that x′i may no longer be
a non-decreasing sequence. Moving xi by ±1 corresponds to moving x′i by ±1. Moreover, xi+1 − xi ≥ d
translates to x′i+1 ≥ x′i . While the reduction from this paragraph is not strictly necessary, it allows
us to forget the value of d from now on. To solve the final problem, consider the dynamic programming
f [i][t], defined as the minimum total cost to make our sequence non-decreasing if we consider only the
first i elements, and the value of the last element has to be t. If we define g[i][t] = mint′≤tf [i][t

′], then
f [i][t] = |t − x′i| + g[i − 1][t]. Of course we cannot maintain f [i][t] explicitly, as the range for possible
values of t would be prohibitively large. However, we can prove by induction that any f [i] is a bitonic
piecewise linear function with respect to t. Transforming f [i] to g[i] corresponds to removing everything
after the minimum value of f [i] and replacing that with a constant segment. The last linear piece in the
function g[i] will have slope 0, so the last piece in the function f [i] will have slope 1. In order to obtain
the optimum solution we don’t need to store the values of f [i], only the shape. Then, having restored the
optimal sequence x′i we can compute the cost. We see we only need to store the ”breakpoints” of f ; i.e.
the points where the slope increases by 1. These points can be stored in a multiset. We process element
of the sequence x′i from left to right. We maintain the multiset of breakpoints S, which corresponds to
the current function g. To process an element x, we need to insert x into S twice (since in the point x
the slope will change by 2). Now, S represents the new f . To transform it into g, we need to remove
the rightmost breakpoint. The rightmost breakpoint in g at a given moment is the optimum (smallest
value of the cost) for a given prefix. If we save these breakpoints in a sequence pi, then it’s easy to use
pi to compute the optimal solution (hint: go from right to left through pi and greedily fix it so that it’s
non-decreasing).

Problem D. Clique
Let’s fix the interval p, and let’s assume that it is the shortest in the solution. Therefore, among the
segments from which we choose a solution, there are none of those that are inside the p. In addition,
segments that do not intersect p can skip immediately, and the segments that contain both ends of p
(that is, either contain the entire p, or contain both ends of p) can be taken without loss of generality.

We are left with segments that contain exactly one of the ends of p. We will call the ends of p as A and
B. We want to choose such a subset of segments that each selected segment containing A intersects with
each selected segment containing B

These ranges can be converted to points on a plane; we will change those containing A into black, and
those containing B into white. Perform the transformation as follows.

Consider the segment containing A, which protrudes(stare, stick out) on one side of this point by xa, and
on the other by ya, and another segment that contains B and protrudes on one side by xb, and on the
other by yb. If the distance between A and B is lenAB on the one hand, and lenBA on the other, these
intervals will not intersect if xa + xb < lenAB and ya + yb < lenBA equivalently, xa < lenAB − xb and
ya < lenBA − yb. We transform the first interval into a black point (xa, ya), and the second interval into
a white point (lenAB − xb, lenBA − yb).
After transformation, our problem is reduced to: select the largest subset of points, so that no white is
larger at both coordinates than any black.

Equivalently, if we think about the ”extremely top chain” of selected white points, then under this chain
we want to take all white points, and above it – black.

Page 2 of 5

Day 5. Jagiellonian U Contest
Russia, Petrozavodsk,

We calculate dynamic programming dpy - the result for currently processed points, assuming that our
chain of white points ends at a height of at most y. To define it, it is convenient to remap (rescale) all y
coordinates of points to value in the range [0 . . . n− 1] first. It can be one with map or sorting. Note that
dp is non-decreasing by definition. We process points from right to left (ascending of the x coordinate),
and update dp. When we process a white point at the height of y, we want to increase by 1 the value of
dpy′ for y′ ≥ y. When we process a black point at the height of y, it turns out that it is enough to increase
by 1 the value of dpy′ for y′ ≤ y. Also, we must also keep the monotonicity of dp, when we process a black
point (find last position i that dpi ≤ dpy and increase only the prefix i by +1). Finally, our result is in
dpn−1. It remains to be seen what data structure we use to represent dp. We need to add 1 on the interval,
find the value at a point, and find for the given v the last i such that dpi ≤ v. For this a simple segment
tree is sufficient: at each node we keep the added value on the base range and its minimum. Thanks to
the minimum, we are able to find the desired position in O(log n) going down from the top tree. To sum
up, it takes O(n log n) to solve the sub-problem with white and black points. As we do this n times, the
final complexity is O(n2 log n).

Problem E. Contamination
The task is that for a fixed set of circles on the plane we should answer for the queries of form
(p, q, ymin, ymax), where p = (px, py) and q = (qx, qy) is two points none of which lie in one of the
circles, and ymin and ymax are two such numbers, that ymin ≤ ymax. For each such query, it is
necessary to determine whether there is a curve at ends in p and q, which entirely lies in the band
Y = {(x, y) ∈ R2 | ymin ≤ y ≤ ymax}.
It’s easy to see that such a curve exists if and only if there is no circle, whose vertical diameter
"separates"points p and q in the Y band, that is, when it does not exist such a circle with the center
(cx, cy) and radius r that min{px, qx} ≤ x ≤ max{px, qx} and cy − r ≤ ymin ≤ ymax ≤ cy + r.

We can solve this problem using scanline the plane with a horizontal line from smallest y coordinates to
highest. We keep a set of active vertical diameters on the segment tree. Vertical diameter of the circle
with the cnehter (cx, cy) and radius r becomes active at the height cy − r, and stops to be active at the
height of cy + r. The answer to the query (p, q, ymin, ymax) is found at the height of ymin, simply checking
the segment tree maximum on the range [min{px, qx},max{px, qx}]. If this maximum is at least ymax,
then answer to the query is «NO», otherwise «YES». The complexity of the above algorithm is O(n log n)

Problem F. The Halfwitters
Consider the number of inversions in a permutation. It’s easy to see that only in a sorted permutation
ther are zero inversions. Еhe first action can increase or decrease the number of inversions by one. For
permutation of size n, the second action changes the number of inversions from k to n∗(n−1)

2 − k. Let X
be the number of seconds to spend on average to sort a random permutation. Then after the third action
we must spend X seconds in average. Therefore, the answer depends only on the number of inversions in
the permutation.

At first, let’s solve the problem, so if there were no actions of the third type. Let’s maintain dpi — the
number of seconds that we need to spend to sort the permutation that originally has exactly i inversions.
Now the answer for the permutation with i inversions will be ansi = min{dpi, X + c}. But we still do
not know the value of X. Let Li be the number of permutations, that have exactly i inversions. Then

X =
∑

Li ∗ ansi, where i — the number of inversions. Now if we knew for what i ansi = dpi and for

what ansi = X + c, we could count X. Let’s sort the dpi and for every j in sorted array save numj —
initial index of dpj . Now fix some position j and say that for prefix j: ansnumj = dpj (dpj ≤ X + c) and
for the suffix j+1: ansnumj = X + c (dpj+1 ≥ X + c). Let cntj be the number of permutations that have
the number of invertions equal to the numj , in other words cntj = Lnumj . Now let S =

∑j
l=0 cntl · dpl

and M =
∑k

l=j+1 cntl, where k = n∗(n−1)
2 — maximum number of inversions. We now have the following

equation:

Page 3 of 5

Day 5. Jagiellonian U Contest
Russia, Petrozavodsk,

X · n! = S +M · (X + c)

with one unknown X. Solve this equation and check if dpj ≤ X + c and dpj+1 ≥ X + c. If the conditions
are met, then we found the value of X.

We can precalculate Li for each possible n, using any dynamic progamming. Author’s dp works in
time O(n4). After precalc for each test case we should find X in time O(n2 log n2), and for each day
we should find only the number of inversions in permutation in O(n2). So the total complexity is
O(n4 + n2 log n2 + d · n2)

Problem G. Invited Speakers
Let’s sort our arrays a and b of pairs in descending order((a, b) < (c, d) if a < c or (a = c ∧ b < d)). Now
let’s take a positive C > max{|x|, |y|}, where (x, y) is an arbitrary element of a or b. Now let’s connect
point ai with point bi through points (ai.x, C + i), (C + i, C + i), (C + i,−C − i), (bi.x,−C − i).

Problem H. Lighthouses
The main observation is that if we went from the vertex x to y and then to the vertex z that lies between
these vertices, then we will never be able to go to the vertex which does not lie between x and y.

Let’s maintain dpi,j,0..1.

1. dpi,j,0 — the answer if the last path we went was ended in i and we still can visit all the vertices
with numbers from i+ 1 to j

2. dpi,j,1 — the answer if the last path we went was ended in j and we still can visit all the vertices
with numbers from i to j − 1.

Here we mean that the next vertex after vertex n is vertex 1.

Now if we want to make a transition to a state dpi,j,0..1, we just go over the next vertex to to which we
will go. This vertex must lie between i and j and there must be a tram line between i or j and to.

The total complexity is O(n3), because we have O(n2) states and O(n) transitions in dp.

Problem I. Sum of palindromes
Let A be the input number, and let it have n digits (which means that A ≤ 10n). Suppose that n ≥ 3.
We can express A as AHAL — concatenation of two numbers, where |AH | =

⌈
n
2

⌉
and |AL| =

⌊
n
2

⌋
. We

substract 1 from AH , obtaining A′H = AH − 1 and then append |AL| digits to A′H such that the result
is a palindrome B. Now A−B ≤ 10n/2+1, so we keep B as one of the desired palindromes, reducing the
length of A by a factor of 2. In log2 n+ 1 ∼ 18 iterations we reach a 2 digit number, which we deal with
as a special case.

Problem J. Space Gophers
Let’s consider two tunnels as connected if one can travel directly from one to the other (in other words,
if there exists a microcube in one tunnel and another microcube in the other, such that these microcubes
touch or coincide). This gives a graph G with tunnels as vertices. In order to see if we can travel between
two microcubes c1 and c2, we can take any tunnel t1 that contains c1, and t2 that contains c2, and ask
if tunnels t1 and t2 are connected in G. Therefore, to solve the problem it is enough to compute the
connected components of G. Unfortunately, there can be O(n2) edges in G, so we cannot store G directly.
However, we can maintain a disjoint-set-union structure on tunnels, and join only some pairs of tunnels
that will span the same set of connected components as the full set of edges in G. Let’s consider which
pairs of tunnels are connected in G. There are two cases: either the connected tunnels are parallel or
perpendicular. The first case is easy, since for any tunnel there are just four possible candidate tunnels.
Let’s now focus on the second case. Assume that we want to consider connected pairs of tunnels a and b,

Page 4 of 5

Day 5. Jagiellonian U Contest
Russia, Petrozavodsk,

where a is parallel to the x-axis, and b to the y-axis. If we have a function to perform this, we can then
call it for the two other pairs of directions. Denote the z coordinate of a and b as za and zb respectively.
Notice that, since a and b are perpendicular, they will be connected if and only if |za − zb| ≤ 1, the
other coordinates of the tunnels don’t matter. Let’s now group all tunnels parallel to the x-axis by their z
coordinate into groups X[z]. Similarly, group all tunnels parallel to the y-axis into groups Y [z]. Consider
a group X[z]. We would like to join all tunnels in that group with all tunnels in groups Y [z − 1], Y [z]
and Y [z + 1]. If these three groups are empty, then there is nothing to be done. Otherwise, we can join
all these tunnels into one component. After that, we can reduce groups X[z], Y [z − 1], Y [z] and Y [z + 1]
into just one tunnel each, since all tunnels in each of these groups are in the same component. By doing
so we will join two tunnels only O(n) times. The complexity is O(n log n), since we need to group the
tunnels by coordinates.

Problem K. To argue, or not to argue
If number of available seats is less than 2 ∗ k then the answer is 0. Let R(j) be the
number of arrangements that there are j pairs that share a common side. Then the answer is
(
∏k−1

j=0

(
availableSeats−2∗j

2

)
+
∑k

j=1 (−1)j ∗ (Rj ∗
(
k
j

)
∗ j! ∗

∏k−j−1
r=0

(
availableSeats−2∗j−2∗r

2

)
)) ∗ 2k.

We can easily compute R(j) using dynamic programming on "broken profile". Consider that m < n, if it
is not, just transpose the matrix. Let’s assign number to each cell of matrix, the number of cell (x, y) is
(x− 1) ∗m+ y. dpi,j,mask is number of ways to arrange first i cells, so that j pairs are sharing a common
side and the mask is a binary representation of last m + 1 cells we have looked at (bit is 0 if the cell is
occupied and 1 otherwise).

∀j R(j) =
∑2m+1−1

mask=0 dpn∗m,j,mask.

Problem L. Wizards Unite
Let t :=

∑n
i=1 ti. Let’s say that we use silver keys at moment 0 to open first k chests with opening times

t1, . . . , tk. Then the total time to open all the chests equals to max{t1, t2, . . . , tk, t− (t1+ t2+ · · ·+ t+k)}.
On the other hand, it’s obvious that the minimum possible total time to open all the chests cannot be
less than max{t1, . . . , tn}. So it’s easy to see that to minimize the total time we should use silver keys to
open k chests with the highest opening times and use the golden key to open other chests.

Complexity: O(n log n).

Page 5 of 5

