
38th Petrozavodsk Programming Camp, Winter 2020
Day 7: Gennady Korotkevich Contest 5, Wednesday, February 5, 2020

Problem Tutorial: “Avg”
If kx is not divisible by n for any x > 0 (or, equivalently, if n has a prime divisor that k doesn’t have), no
sequence of steps exists. To prove that, consider an array A = (0, 0, . . . , 0, 0, 1): each element of this array
must be equal 1

n in the end, but after x steps we can only obtain rational values whose denominators are
divisors of kx.

Otherwise, a valid sequence always exists, and we can construct it inductively. If n = k, take bi = i.
Otherwise, find any d > 1 that is a divisor of k and n

k (for example, d = gcd(k, nk)). Split n elements into
groups of size d. For each k

d consecutive groups, perform a step equalizing them. Now the elements in each
group are equal. Finally, form d groups of size n

d , one element from each group, and solve the problem
recursively for each group.

The case when n is not divisible by k is more interesting. It’s not even obvious how to check if a sequence
exists: for example, when n = 8 and k = 6, it seems that there is no solution. If you have any insights
about this, please share!

Problem Tutorial: “Bin”

Let’s denote the given function as fk(n), then fk(n) =
min(n−1,⌊ k+n

2 ⌋)∑
i=1

fk(i) · fk(n− i).

Consider the following problem: we are given n integers a0, a1, . . . , an−1 one by one, and after we get each
ai, we need to respond with ci =

∑i
j=0 ajai−j . If we can solve this problem in O(T (n)), we can solve the

original problem in O(T (n) + nk). Let’s concentrate on this problem then.

If we are given all values of ai in advance, we can just convolve the sequence with itself using NTT in
O(n log n), however, the main difficulty lies in finding the coefficients of the convolution on the fly.

Let f(L,R) be a recursive function that solves the problem for all i ∈ [L;R), assuming that we already
have coefficients up to i− 1-th, and also bi for i ∈ [L;R) has been calculated as bi =

∑L−1
j=i−L+1 ajai−j .

If R− L = 1, read aL and respond with cL = bL + 2a0aL if L > 0, and with c0 = a20 otherwise.

If R − L > 1, find M =
⌈
L+R
2

⌉
and call f(L,M) first. Now we want to call f(M,R), but we need to

recalculate b before that. If L > 0, convolve aL, aL+1, . . . , aM−1 and a0, a1, . . . , aM−L−1 using NTT, then
add corresponding coefficients of this convolution to bi for i ≥ M . Otherwise, if L = 0, just convolve
a0, a1, . . . , aM−1 with itself and replace b with the result.

Time complexity of this solution is O(n log2 n).

Problem Tutorial: “Cat”
We’ll consider a solution using suffix array, but solutions using other suffix structures are possible as well.

Let s = a+b. We need to find the number of distinct substrings of s with at least one occurrence containing
characters at positions |a| and |a|+ 1.

Let n = |s|. Let’s build the suffix array p1, p2, . . . , pn of s and let li = LCP (spi..n, spi+1..n). If we just
needed to count distinct substrings of s, that number would be

(
n+1
2

)
− l1 − l2 − . . .− ln−1.

Let’s consider suffixes in order p1, p2, . . . , pn. For each i, first, some prefixes of suffix pi−1 can be marked
as they will never appear again. Then, suffix pi brings substrings spi..pi+li−1

, spi..pi+li−1+1, . . . , spi..n into
play. If pi ≤ |a|, for |b| longest prefixes of spi..n, we also know now that they have an occurrence covering
positions |a| and |a|+ 1.

It’s enough to maintain some data structure that simulates an array with the following queries:

• set 0 or 1 to all values in some range;

• find the sum of value in some range.

Page 1 of 5

38th Petrozavodsk Programming Camp, Winter 2020
Day 7: Gennady Korotkevich Contest 5, Wednesday, February 5, 2020

A usual segment tree will do. (It’s also possible to use the structure of queries and go with std::set or
something similar.)

Problem Tutorial: “Div”
Multiply both sides by (x− 1). We need to count x > 1 such that P0(x) = d0x

b0 + d1x
b1 + . . .+ dk−1x

bk−1

is divisible by xm − 1 (check x = 1 separately).

Taking P0(x) modulo xm−1 as a polynomial, we’ll get P (x) = d0x
b0 mod m+d1x

b1 mod m+. . .+dk−1x
bk−1 mod m.

If P (x) ≡ 0, the answer is infinite. Otherwise, let’s count x > 1 such that P (x) is divisible by m.

Let’s rewrite P (x) as P (x) = e0 + e1x+ . . .+ em−1x
m−1. Note that if x > max(|e0|, |e1|, . . . , |em−1|) + 1,

then P (x) ̸= 0 and |e0|+ |e1x|+ . . .+ |em−1|xm−1 < xm − 1, therefore, we don’t need to consider such x.
Now we only need to consider O(n) values of x.

Let’s fix x and transform P (x) as follows:

• if there’s some i such that ei ≥ x, subtract x from ei and add 1 to e(i+1) mod m;

• if there’s some i such that ei ≤ −x, add x to ei and subtract 1 from e(i+1) mod m;

• otherwise, stop the process.

This transformation keeps the value of P (x) the same. Each step decreases the sum of |ei| by at least
x− 1, therefore we’ll do O(nx) steps.

After this process, we have |ei| < x for all i, and P (x) is divisible by xm−1 if one of the following applies:
all ei = 0, all ei = x− 1, or all ei = −x+ 1.

We can perform all steps efficiently using built-in associative containers with O(log n) overhead and
rollback changes done for some x before proceeding to the next x. Since there are

∑n
x=2O(nx) = O(n log n)

steps to be done, the overall time complexity is O(n log2 n).

Problem Tutorial: “Exp”
This problem might be well-known in some countries, but how do other countries learn about such problems
if nobody poses them?

Consider a polynomial P (y) = p0 + p1y + . . . + pky
k. If we find the coefficients qi of Q(y) = Pn(y), the

answer is
∑nk

i=0 qi ·min(i, x). Since the sum of pi is 1, we can also rewrite this as
∑x−1

i=0 qi ·i+(1−
∑x−1

i=0 qi)·x.
Hence, we just need to find the first x coefficients of Pn(y).

The title of this problem, Exp, stands for expected, experience, and exponentiation.

Consider the derivative of Pn+1(y) and find two different expressions for it:

• (Pn+1(y))′ = (P (y)P (y) . . . P (y))′ = (n+ 1)Pn(y)P ′(y) = A;

• (Pn+1(y))′ = (Pn(y)P (y))′ = (Pn(y))′P (y) + Pn(y)P ′(y) = B.

Since A = B, we have nPn(y)P ′(y) = (Pn(y))′P (y). Consider the coefficient of yi in both parts of this
equation:

• in the left part, it’s n(qip1 + 2qi−1p2 + . . .+ kqi−k+1pk);

• in the right part, it’s (i+ 1)qi+1p0 + iqip1 + . . .+ (i− k + 1)qi−k+1pk.

It turns out that we can derive qi+1 from the equality of these two expressions if we know q0, q1, . . . , qi.
Each coefficient can be calculated in O(k), hence time complexity is O(xk).

Page 2 of 5

38th Petrozavodsk Programming Camp, Winter 2020
Day 7: Gennady Korotkevich Contest 5, Wednesday, February 5, 2020

Problem Tutorial: “Flip”
Consider strings of length 2n with n letters A and n letters B, corresponding to team assignments. What
is the probability that a string s corresponds to the final team assignment? Let’s define lA be the position
of the last occurrence of A, and lB similarly. Then the probability p(s) = 2−min(lA,lB).

We need to find the total probability of strings such that sa1 = sa2 = . . . = sak = A.

Let’s classify strings on the value of m = min(lA, lB) (all such strings have the same probability).

If m = ak, then sm = A and the number of such strings is
(
m−k
n−k

)
.

If ai < m < ai+1 or m < a1 (then let i = 0) or m > ak, then sm = B (in the m > ak case, this is not the
only option) and the number of such strings is

(
m−i
n−1

)
. If we find prefix sums of values

(
j

n−1

)
· 2−j , we can

answer such queries in O(1).

If m > ak, then sm = A is also possible, and the number of such strings is
(
m−k−1
n−k−1

)
. If we find prefix sums

of values
(

j
n−k−1

)
· 2−j for each k appearing in the input, we can answer such queries in O(1). There are

only O(
√
n) different values of k.

Overall time complexity is O(n
√
n).

Problem Tutorial: “Grp”
The lower bound on the number of groups if k is odd is

∑k
i= k+1

2

(
n
i

)
: all subsets of size at least k+1

2 have

to belong to different groups. Similarly, if k is even, the lower bound is 1
2

(
n
k/2

)
+
∑k

i= k
2
+1

(
n
i

)
.

Note that
(
n
i

)
≥

(
n

k−i

)
when i ≥ k

2 . Hence, if we can match all subsets of size i with subsets of size k − i
into non-intersecting pairs without common elements, we can achieve the lower bound.

Such a matching always exists when i ̸= k − i, since the graph is bipartite and “regular” (not exactly,
but all vertices in each part have equal degrees). When k is even, the graph is not bipartite, but it turns
out that forming

⌊
1
2

(
n
k/2

)⌋
pairs of subsets of size k

2 is always possible for n ≤ 17. Even though the
graphs are huge, we can build them and try to find maximum matchings: using Kuhn’s algorithm for
bipartite graphs, and using Edmonds’ blossom algorithm (or maybe Kuhn’s algorithm with hacks...) for
non-bipartite graphs. Even though time complexity looks big, a greedy initialization already builds a huge
part of the matching, and augmenting chains are very short on average too. You can try all possible test
cases to make sure your solution is fast enough.

If you know a constructive way to build the matchings, or if you have a proof that an optimal matching
of subsets of size k

2 for even k always exists, please share!

Problem Tutorial: “Hit”
Let’s start with placing points so that each segment contains at least one point greedily: while there’s at
least one uncovered segment, find the one with the smallest ri and place a point at ri. Suppose that the
largest number of points inside one of the given segments is t in this placement.

It turns out that the answer is either t or t− 1. Indeed, consider points x1, x2, . . . , xt inside the segment
[li, ri] with the largest number of points. Consider the rightmost point with coordinate less than li in the
optimal placement. Then the next point to the right of it has to be at coordinate at most x2, the second
next point has to be at coordinate at most x3, ..., the t− 1-th next point has to be at coordinate at most
xt. Hence, segment [li, ri] will contain at least t− 1 points.

It remains to check if the answer is t − 1. Let’s compress the ends of segments and go through points
from right to left. For each point x, let’s answer the following question: if this point is included into the
set, is it possible to include some points with coordinates more than x so that each segment with ri ≥ x
contains at least one point, and each segment contains at most t − 1 points? We’ll call points satisfying
this condition legal.

For each point x, let wx be the rightmost legal point such that there are no segments strictly inside

Page 3 of 5

38th Petrozavodsk Programming Camp, Winter 2020
Day 7: Gennady Korotkevich Contest 5, Wednesday, February 5, 2020

[x,wx]. To check the condition for a particular point x, let’s start with finding wx. After that, find
y = w(w(. . . w(x) . . .)) (t − 1 times). If there exists a segment containing both points x and y, this
segment would contain t points if point x was placed, thus, point x is illegal. Otherwise, point x is legal.

Finally, if the point to the left of all segments is legal, we can form a sequence of legal points that is a
valid solution for t− 1, otherwise, the answer is t and we output the initial greedy placement.

Problem Tutorial: “Ineq”
Rewrite the inequality as aix + biy ≤ ci − 1. We can see that each triple denotes a half-plane including
its border on the (x, y) plane.

The most restricting set of half-planes including the given points can be found by building the convex
hull of points (xi, yi): our half-planes correspond to its edges then.

We need to check if there exists another integer point (x′, y′) /∈ S inside the convex hull. It is not very
easy to find all integer points inside a convex polygon, but instead of finding them, let’s just count them
using Pick’s theorem: if their number is n, the answer is positive, otherwise it’s more than n and the
answer is negative.

Problem Tutorial: “Joy”
If our position in the queue is fixed, we can use DP. Consider a binary tree with n leaves, and let f(i, j)
be the probability that person (leaf) j wins in the subtree of vertex i. Time complexity of such DP is
O(n2). However, if we try all n positions independently, we’ll arrive at an O(n3) solution, which is too
slow.

Note that if we fix our position, we know that to become the champion, we have to beat the winners of
some subtrees. If we know DP values for these subtrees, we can calculate the probability of becoming the
champion in O(n), totalling in O(n2) for n starting positions.

Finally, note that there are not so many different subtrees we might want to beat. For example, if
n = 16, we might want to beat all segments of 1 and 2 people, only the following segments of 4 people:
a1..4, a5..8, a9..12, a4..7, a8..11, a12..15, and the following segments of 8 people: a1..8, a8..15. The number of
interesting segments is only twice the number of segments in the original DP for one tree, and time
complexity of calculating DP for interesting segments is still O(n2).

Problem Tutorial: “Kilk”
WLOG assume x ≤ y. It’s not hard to compute the smallest possible length of the longest substring
consisting of equal letters: in fact, it is k = l(x, y) =

⌊
x+y
x+1

⌋
.

Let’s fix some value of k and find the required number of strings for all pairs (x, y) such that l(x, y) = k.
Let ak(x, y) be the number of strings that have x letters ‘a’ and y letters ‘b’, don’t have substrings of
equal letters of length more than k, and end with ‘a’. Let bk(x, y) be defined similarly, except that here
we count strings ending with ‘b’. Then, the answer for a pair (x, y) is af(x,y)(x, y) + bf(x,y)(x, y).

Trying all possible lengths of the substring of equal letters at the end of the string, we get the following
formulas:

• ak(x, y) =
min(k,x)∑

i=1
bk(x− i, y);

• bk(x, y) =
min(k,y)∑

i=1
ak(x, y − i).

Computed in a straightforward way, we can compute the answers for all pairs (x, y) with x, y ≤ n in
O(n4).

We can use the following two optimizations to speed it up to O(n2 log n):

Page 4 of 5

38th Petrozavodsk Programming Camp, Winter 2020
Day 7: Gennady Korotkevich Contest 5, Wednesday, February 5, 2020

• use prefix sums to find ak(x, y) faster, or just notice that
ak(x, y) = ak(x− 1, y) + bk(x− 1, y)− bk(x− 1− k, y) (almost follows from the definition);

• note that we only need x ≤ 2n
k , therefore, the number of interesting DP states is about

n∑
k=1

2n2

k = O(n2 log n).

Time limit is a bit (unnecessarily) strict, so one needs to be careful with implementation.

Page 5 of 5

