Problem A. Alternative Accounts

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds 512 mebibytes

Everybody knows that jiry_2 $=$ Syloviaely.
There are n different accounts on the website, and some of them competed in the recent k contests. However, Mike suspects that there are lots of alternative accounts: two or more accounts owned by the same person.
There are axioms believed by everyone:

- Nobody can use two different accounts in one contest simultaneously.
- Nobody shares an account, which means that each account can only be owned by one person.

So, a set of accounts may be owned by the same person if no two of them took part in the same contest.
Mike wants to know the minimum possible number of different people behind the given list of accounts.

Input

The first line contains an integer $T\left(1 \leq T \leq 10^{5}\right)$ indicating the number of test cases. For each test case:
The first line contains two integers $n, k\left(1 \leq n \leq 10^{5}, 1 \leq k \leq 4\right)$.
Each of the following k lines contains an integer $m(1 \leq m \leq n)$ first, followed by m distinct integers $x_{i}\left(1 \leq x_{i} \leq n\right)$ indicating the accounts participating in the contest.
Some accounts may not participate in any contests.
It is guaranteed that $\sum n \leq 5 \cdot 10^{5}$.

Output

For each test case, output one line with one integer: the answer.

Example

		standard input		standard output
1				
2				4
3	1	2		
4	4			
4	4	5	2	

Problem B. Bitset Master

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
6 seconds
512 mebibytes

It's well known in China that $O\left(n^{2}\right)$ algorithms can pass in a problem with $n=10^{6}$ easily.
You are given a tree with n vertices and $n-1$ edges $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n-1}, v_{n-1}\right)$. For each vertex u, there is a set S_{u}. Initially $S_{u}=\{u\}$.
There are two types of operations:

- "1 u ": output the number of sets $S_{v}(1 \leq v \leq n)$ that contain u.
- "2 p ": take the sets $S_{u_{p}}$ and $S_{v_{p}}$ and assign $S_{u_{p}} \cup S_{v_{p}}$ to both of them.

You need to perform m operations. Output the answer for each operation of the first kind.

Input

The first line contains two integers $n, m\left(2 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 6 \cdot 10^{5}\right)$.
Each of the following $n-1$ lines contains two integers u_{i}, v_{i} describing an edge of the tree $\left(1 \leq u_{i}, v_{i} \leq n\right)$.
Each of the following m lines contains two integers t, w describing an operation $(1 \leq t \leq 2,1 \leq w \leq n+1-t)$.

Output

For each operation of the first kind, output an integer on a separate line.

Example

	standard input	
5	11	5
1	2	2
1	3	3
1	4	4
1	5	5
2	4	
2	3	
2	2	
2	1	
1	1	
1	2	
1	3	
2	2	
2	3	
1	4	
1	5	

Problem C. Cyclic Distance

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

The trick from problem "Alien" is a great way to improve a naive $O(n k)$ dynamic programming to $O(n \log n)$. More problems with this trick can make the contest better, like the two unsolved problems in 300iq Contest 2.
You are given a weighted tree with n vertices and $n-1$ edges. The i-th edge connects vertices u_{i} and v_{i} and has length l_{i}. Let $\operatorname{dis}(u, v)$ be the distance (sum of weights on simple path) between vertex u and vertex v in the tree.
Find k distinct vertices $p_{1}, p_{2}, \ldots, p_{k}$ that maximize $\sum_{i=1}^{k} \operatorname{dis}\left(p_{i}, p_{i \bmod k+1}\right)$. Output the maximum sum.

Input

The first line contains an integer $T\left(1 \leq T \leq 10^{5}\right)$ indicating the number of test cases. For each test case:
The first line contains two integers $n, k\left(2 \leq n \leq 2 \cdot 10^{5}, 2 \leq k \leq n\right)$.
Each of the following $n-1$ lines contains three integers $u_{i}, v_{i}, l_{i}\left(1 \leq u_{i}, v_{i} \leq n, 1 \leq l_{i} \leq 10^{6}\right)$.
It is guaranteed that $\sum n \leq 2 \cdot 10^{5}$.

Output

For each test case, output one line with one integer: the answer.

Example

	standard input		standard output
1			44
1	2	4	
1	3	1	
1	4	8	
4	5	9	

Problem D. Data Structure Quiz

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	512 mebibytes

After learning KD-tree, you came up with the following problem. It should be a great quiz for this data structure. You are given an $n \times n$ matrix A. All elements are zero initially.

First, you need to perform m_{1} range addition operations. For each operation, you are given $x_{1}, y_{1}, x_{2}, y_{2}, w$ $\left(1 \leq x_{1} \leq x_{2} \leq n, 1 \leq y_{1} \leq y_{2} \leq n\right)$. You need to add w to all the elements $A_{i, j}$ where $x_{1} \leq i \leq x_{2}$ and $y_{1} \leq j \leq y_{2}$.
Then you need to perform m_{2} range maximum queries. For each operation, you are given $x_{1}, y_{1}, x_{2}, y_{2}$ $\left(1 \leq x_{1} \leq x_{2} \leq n, 1 \leq y_{1} \leq y_{2} \leq n\right)$. You need to find the maximum element among the elements $A_{i, j}$ that satisify $x_{1} \leq i \leq x_{2}$ and $y_{1} \leq j \leq y_{2}$.

Input

The first line contains three integers $n, m_{1}, m_{2}\left(1 \leq n \leq 5 \cdot 10^{4}, 1 \leq m_{1} \leq 5 \cdot 10^{4}, 1 \leq m_{2} \leq 5 \cdot 10^{5}\right)$.
Each of the following m_{1} lines contains five integers $x_{1}, y_{1}, x_{2}, y_{2}, w\left(1 \leq x_{1} \leq x_{2} \leq n, 1 \leq y_{1} \leq y_{2} \leq n\right.$, $1 \leq w \leq 10^{9}$).
Each of the following m_{2} lines contains four integers $x_{1}, y_{1}, x_{2}, y_{2}\left(1 \leq x_{1} \leq x_{2} \leq n, 1 \leq y_{1} \leq y_{2} \leq n\right)$.

Output

Output m_{2} lines, each line containing one integer: the answer to the respective query.

Example

standard input				
5	5	5		
1	1	4	5	4
4	1	4	1	10
1	3	3	3	3
1	1	5	5	8
2	4	4	5	8

Problem E. Evil Subsequence

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

The problem setter of Div7E should stop creating problems.
kiwikiwi

It's just a problem to waste your time.
You are given two sequences $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{m}$.
Two sequences $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{q}\right)$ match iff $p=q$ and $x_{i}=x_{j} \Leftrightarrow y_{i}=y_{j}$ for every possible pair $1 \leq i, j \leq p$.
Output the number of subsequences of $a_{1}, a_{2}, \ldots, a_{n}$ that match $b_{1}, b_{2}, \ldots, b_{m}$.

Input

The first line contains two integers n, $m(1 \leq n \leq 3000,1 \leq m \leq \min (5, n))$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq n\right)$.
The third line contains m integers $b_{1}, b_{2}, \ldots, b_{m}\left(1 \leq b_{i} \leq m\right)$.

Output

Output one integer: the answer.

Examples

standard input								standard output		
10	5	5	4	1	4	3	3	4	2	20
3	4	3	2	1			6			
4	2									
2	2	2	2							
2	2									

Problem F. Fast as Ryser

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

After reading the paper Counting Perfect Matchings as Fast as Ryser, you learned how to count the number of perfect matchings in a general graph in $O\left(2^{n} n^{2}\right)$. So you decided to write this problem to encourage people to read the paper and learn new technology.
You are given an undirected graph with n vertices and m edges, and also a constant c. We define the weight of an edge set S as follows:

- If there are two edges in set S sharing common vertices, the weight is 0 .
- Otherwise, the weight is $c^{|S|}$. Note that the weight of an empty set is 1 .

Compute the sum of the weight of all subsets of edges. The answer can be large, so output it modulo $10^{9}+7$.

Input

The first line contains three integers $n, m, c\left(1 \leq n \leq 36,0 \leq m \leq \frac{n(n-1)}{2}, 1 \leq c \leq 10^{9}+6\right)$.
Each line of the following m lines contains two integers $u, v(1 \leq u, v \leq n, u \neq v)$ indicating an undirected edge (u, v) in the graph. All edges are distinct.

Output

Output one integer: the answer.

Examples

	standard input	
6	10	100
1	3	
2	4	
3	4	
4	6	
1	2	
4	5	
2	3	
1	4	
3	5	
8	118184601	
6	7	
3	6	
6	5	
7	3	
6	2	
8	1	
1	7	
4	3	
5	1	
6	1	
6	4	

Problem G. Geometry PTSD

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Computational geometry is the key to modern programming contests. However, it is always hard to construct a good test case for a geometry problem, like the problem I in EC Final 2019.

On riadwaw \rightarrow OqpenCup. GP of Xi'An, 2 weeks ago +56

| love geometry! :)

Время посlunk	ID	Задача	Компилятор	Вердикт	Tип посlıлки	Время	Память	Tect	Балпи	
27 дек 2019, 10:11:25	29301434	1	GNU c++17 7.3	WA	-	25 ms	4.88Mb	206	-	oruetr

In order to manage the key to the test case preparation, you need to find three points A, B, C on a unit sphere such that $\min (|A B|,|A C|,|B C|) \geq 1.7$ and the distance from the origin point $(0,0,0)$ to the plane $A B C$ is no more than 1.5×10^{-19} but greater than 0 .

Input

There is no input for this problem.

Output

Output three lines.
Each line contains three integers $x_{i}, y_{i}, z_{i}\left(-10^{6} \leq x_{i}, y_{i}, z_{i} \leq 10^{6}, x^{2}+y^{2}+z^{2} \neq 0\right)$ representing the point $\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$.
Even while the checker is numerically stable, it is not done in the exact arithmetic. You might get wrong answer if your solution is too close to the constraints. For example, if the distance between A and B is $1.7+10^{-9}$, it might cause some trouble.

Example

standard input	standard output			
(no input)	1 2 3 4 5 6 -1000000 -1000000 -1000000			

Note

Note that the sample output is incorrect.

Problem H. Heavy Stones

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

After learning Garsia-Wachs algorithm, you came up with the following problem.
There are n piles of stones in a line. The i-th pile contains a_{i} stones. You want to merge all the stones into one pile.
At first, you will select the k-th pile. Then you can do the following operation on the selected pile: Choose the left or right adjacent pile of the selected one, and merge them into one pile. The new pile becomes the selected pile after the operation. After doing this operation $n-1$ times, there will be only one pile left. The cost of each merge operation is the number of stones in the new pile.

You want to know the smallest total cost if you select the k-th pile initially. For $k=1,2, \ldots, n$, output the answer.

Input

The first line contains an integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{6}\right)$.

Output

Output n integers. The k-th number indicates the smallest total cost if you select the k-th pile initially.

Examples

standard input	standard output
$\begin{array}{lllll} \hline 5 & & & & \\ 2 & 1 & 3 & 5 & 4 \end{array}$	3535364349
$\begin{array}{llllllllll} 10 & & & & & & & & \\ 18 & 37 & 81 & 6 & 58 & 99 & 87 & 34 & 75 & 9 \end{array}$	2637263726572657269529492995290528802880

Note

If you select the 4 -th pile initially, the process can go as follows:
$\{2,1,3, \mathbf{5}, 4\} \rightarrow\{2,1, \mathbf{8}, 4\} \rightarrow\{2, \mathbf{9}, 4\} \rightarrow\{\mathbf{1 1}, 4\} \rightarrow\{\mathbf{1 5}\}$.
The total cost is $8+9+11+15=43$.

Problem I. Interesting Game

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

50th IMO 2009
Combinatorics

C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties them into the river, and puts them back. Then the next round begins. The Stepmother's goal is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?

Is it a notorious coincidence with this problem?
Cinderella and her wicked Stepmother are playing the game. Cinderella has n non-negative integers $a_{1}, a_{2}, \ldots, a_{n}$ at first. There are two parameters A and B for this game.
Cinderella and Stepmother take turns playing, starting with Cinderella. One each turn, Cinderella can replace the sequence $a_{1}, a_{2}, \ldots, a_{n}$ by a new integer sequence $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}$ such that

- $a_{1}^{\prime} \geq a_{1}, \ldots, a_{n}^{\prime} \geq a_{n}$
- $\sum_{i=1}^{n} a_{i}^{\prime} \leq \sum_{i=1}^{n} a_{i}+A$

Then Stepmother can choose B indices $i_{1}, i_{2}, \ldots, i_{B}$, and set $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{B}}$ to 0 .
The game continues forever. Let M be the maximum value of $a_{1}, a_{2}, \ldots, a_{n}$ for all the time. Cinderella wants to maximize M, and Stepmother wants to minimize M.
Determine the value of M if both players play optimally.

Input

The first line contains an integer $T\left(1 \leq T \leq 10^{5}\right)$ indicating the number of test cases. For each test case:
The first line contains three integers $n, A, B\left(1 \leq B \leq n \leq 10^{5}, 0 \leq A \leq 10^{12}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq 10^{12}\right)$.
It is guaranteed that $\sum n \leq 5 \times 10^{5}$.

Output

For each test case, output a line containing one integer: the answer.

Example

Note

A possible game process for the first test case:
$\{1,2,3\} \rightarrow\{3,4,4\} \rightarrow\{3,4,0\} \rightarrow\{6,6,0\} \rightarrow\{6,0,0\} \rightarrow\{11,0,0\}$.

Problem J. Junk Problem

Input file:
Output file: Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

Browsing Wikipedia and reading some random references are the best way to write problems.
Find a subset $S \in\{1,2, \ldots, n\}$ such that:

- For all pairs (a, b) such that $a, b \in S$ and $a<b$, the values of bitwise XOR of a and b should be distinct.
- $|S| \geq\lfloor\sqrt{0.5 n}\rfloor$.

Input

The first line contains an integer $n\left(1 \leq n \leq 10^{7}\right)$.

Output

The first line contains an integer m : the size of S.
The second line contains m distinct integers from 1 to n : the elements of the set S in any order.

Example

standard input			standard output	
49	4			
	1	2	3	4

Problem K. Knowledge-Oriented Problem

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

After gaining a lot of knowledge, you decided to write a knowledge-oriented problem.
You are given an undirected graph G with n vertices and m edges. You copy it k times and denote the copies by $G_{1}, G_{2}, \ldots, G_{k}$. You add edges between vertex u in copy G_{i} and the same vertex u in copy G_{i+1} for all $1 \leq i \leq k-1$ and $1 \leq u \leq n$.
Find the number of spanning trees of the new graph. The answer can be large, so output it modulo $10^{9}+7$.

Input

The first line contains three integers $n, m, k\left(1 \leq n \leq 500,0 \leq m \leq \frac{n(n-1)}{2}, 1 \leq k \leq 10^{18}\right)$.
Each of the following m lines contains two integers $u, v(1 \leq u, v \leq n, u \neq v)$ indicating an undirected edge (u, v) in the graph. All edges are distinct.

Output

Output one integer: the answer.

Examples

	standard input	
5	6	2
3	2	
5	1	
3	4	standard output
2	4	4725
5	3	
1	3	
2	1	200
1	2	569698435
5	10100000000000000000	
1	2	
1	3	
1	4	
1	5	
2	3	
2	4	
2	5	
3	4	5
3	5	
4	5	

Problem L. LCM Sum

Input file: Output file: Time limit: Memory limit:
standard input
standard output
7 seconds
512 mebibytes

Are you sick of solving problems like computing the prefix sum of a random number theory function? As a terrible problem writer, here I present another one for you.

Compute

$$
\sum_{x=1}^{n} \operatorname{lcm}(x, x+1, \ldots, x+k)
$$

The answer can be large, so output it modulo $10^{9}+7$.

Input

The first line contains two integers $n, k\left(1 \leq n \leq 10^{18}, 0 \leq k \leq 30\right)$.

Output

Output one integer: the answer.

Examples

standard input	standard output
103	18936
100006	43482752
100000000015	688102997

