Problem A. New Home

$\begin{array}{ll}\text { Time limit: } & 5 \text { seconds } \\ \text { Memory limit: } & 1024 \text { megabytes }\end{array}$
Wu-Fu Street is an incredibly straight street that can be described as a one-dimensional number line, and each building's location on the street can be represented with just one number. Xiao-Ming the Time Traveler knows that there are n stores of k store-types that had opened, has opened, or will open on the street. The i-th store can be described with four integers: $x_{i}, t_{i}, a_{i}, b_{i}$, representing the store's location, the store's type, the year when it starts its business, and the year when it is closed.
Xiao-Ming the Time Traveler wants to choose a certain year and a certain location on Wu-Fu Street to live in. He has narrowed down his preference list to q location-year pairs. The i-th pair can be described with two integers: l_{i}, y_{i}, representing the location and the year of the pair. Now he wants to evaluate the life quality of these pairs. He defines the inconvenience index of a location-year pair to be the inaccessibility of the most inaccessible store-type of that pair. The inaccessibility of a location-year pair to store-type t is defined as the distance from the location to the nearest type- t store that is open in the year. We say the i-th store is open in the year y if $a_{i} \leq y \leq b_{i}$. Note that in some years, Wu-Fu Street may not have all the k store-types on it. In that case, the inconvenience index is defined as -1 .
Your task is to help Xiao-Ming find out the inconvenience index of each location-year pair.

Input

The first line of input contains integer numbers n, k, and q : number of stores, number of types and number of queries $\left(1 \leq n, q \leq 3 \cdot 10^{5}, 1 \leq k \leq n\right)$.
Next n lines contain descriptions of stores. Each description is four integers: x_{i}, t_{i}, a_{i}, and b_{i} $\left(1 \leq x_{i}, a_{i}, b_{i} \leq 10^{8}, 1 \leq t_{i} \leq k, a_{i} \leq b_{i}\right)$.
Next q lines contain the queries. Each query is two integers: l_{i}, and $y_{i}\left(1 \leq l_{i}, y_{i} \leq 10^{8}\right)$.

Output

Output q integers: for each query output its the inconvenience index.

Scoring

Subtask 1 (points: 5)

$n, q \leq 400$

Subtask 2 (points: 7)

$n, q \leq 6 \cdot 10^{4}, k \leq 400$
Subtask 3 (points: 10)
$n, q \leq 3 \cdot 10^{5}, a_{i}=1, b_{i}=10^{8}$ for all stores.

Subtask 4 (points: 23)

$n, q \leq 3 \cdot 10^{5}, a_{i}=1$ for all stores.

Subtask 5 (points: 35)

$n, q \leq 6 \cdot 10^{4}$
Subtask 6 (points: 20)
$n, q \leq 3 \cdot 10^{5}$

Examples

input	output
424	4
$\begin{array}{llll}3 & 1 & 1 & 10\end{array}$	2
9224	-1
7257	-1
41810	
53	
56	
59	
110	
213	0
1114	0
1126	-1
13	
15	
17	
111	99999999
100000000111	
11	

Note

In the first example there are four stores, two types, and four queries.

- First query: Xiao-Ming lives in location 5 in year 3. In this year, stores 1 and 2 are open, distance to store 1 is 2 , distance to store 2 is 4 . Maximum is 4 .
- Second query: Xiao-Ming lives in location 5 in year 6. In this year, stores 1 and 3 are open, distance to store 1 is 2 , distance to store 3 is 2 . Maximum is 2 .
- Third query: Xiao-Ming lives in location 5 in year 9. In this year, stores 1 and 4 are open, they both have type 1 , so there is no store of type 2 , inconvenience index is -1 .
- Same situation in fourth query.

In the second example there are two stores, one type, and three queries. Both stores have location 1 , and in all queries Xiao-Ming lives at location 1. In first two queries at least one of stores is open, so answer is 0 , in third query both stores are closed, so answer is -1 .

In the third example there is one store and one query. Distance between locations is 99999999.

Problem B. Circle selection

Time limit:
3 seconds
Memory limit: 1024 megabytes
Given n circles $c_{1}, c_{2}, \ldots, c_{n}$ on a flat Cartesian plane. We attempt to do the following:

1. Find the circle c_{i} with the largest radius. If there are multiple candidates all having the same (largest) radius, choose the one with the smallest index. (i.e. minimize i).
2. Remove c_{i} and all the circles intersecting with c_{i}. Two circles intersect if there exists a point included by both circles. A point is included by a circle if it is located in the circle or on the border of the circle.
3. Repeat 1 and 2 until there is no circle left.

We say c_{i} is eliminated by c_{j} if c_{j} is the chosen circle in the iteration where c_{i} is removed. For each circle, find out the circle by which it is eliminated.

Input

The first line contains an integer n, denoting the number of circles $\left(1 \leq n \leq 3 \cdot 10^{5}\right)$. Each of the next n lines contains three integers x_{i}, y_{i}, r_{i}, representing the x-coordinate, the y-coordinate, and the radius of the circle $c_{i}\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}, 1 \leq r_{i} \leq 10^{9}\right)$.

Output

Output n integers $a_{1}, a_{2}, \ldots, a_{n}$ in the first line, where a_{i} means that c_{i} is eliminated by $c_{a_{i}}$.

Scoring

Subtask 1 (points: 7)
$n \leq 5000$
Subtask 2 (points: 12)
$n \leq 3 \cdot 10^{5}, y_{i}=0$ for all circles
Subtask 3 (points: 15)
$n \leq 3 \cdot 10^{5}$, every circle intersects with at most 1 other circle
Subtask 4 (points: 23)
$n \leq 3 \cdot 10^{5}$, all circles have the same radius.
Subtask 5 (points: 30)
$n \leq 10^{5}$
Subtask 6 (points: 13)
$n \leq 3 \cdot 10^{5}$

Example

input	output
11	72745677476
992	
1321	
1182	
332	
3121	
12141	
985	
282	
521	
1442	
14141	

Note

The picture in the statements illustrates the first example.

Problem C. Duathlon

Time limit: 1 second
Memory limit: 1024 megabytes

The Byteburg's street network consists of n intersections linked by m two-way street segments. Recently, the Byteburg was chosen to host the upcoming duathlon championship. This competition consists of two legs: a running leg, followed by a cycling leg.
The route for the competition should be constructed in the following way. First, three distinct intersections s, c, and f should be chosen for start, change and finish stations. Then the route for the competition should be built. The route should start in s, go through c and end in f. For safety reasons, the route should visit each intersection at most once.
Before planning the route, the mayor wants to calculate the number of ways to choose intersections s, c, and f in such a way that it is possible to build the route for them. Help him to calculate this number.

Input

The first line contains integers n and m : number of intersections, and number of roads. Next m lines contain descriptions of roads $\left(1 \leq n \leq 10^{5}, 1 \leq m \leq 2 \cdot 10^{5}\right)$. Each road is described with pair of integers v_{i}, u_{i}, the indices of intersections connected by the road ($1 \leq v_{i}, u_{i} \leq n, v_{i} \neq u_{i}$). For each pair of intersections there is at most one road connecting them.

Output

Output the number of ways to choose intersections s, c, and f for start, change and finish stations, in such a way that it is possible to build the route for competition.

Scoring

Subtask 1 (points: 5)

$n \leq 10, m \leq 100$

Subtask 2 (points: 11)

$n \leq 50, m \leq 100$

Subtask 3 (points: 8)

$n \leq 100000$, there are at most two roads that ends in each intersection.

Subtask 4 (points: 10)

$n \leq 1000$, there are no cycles in the street network. The cycle is the sequence of $k(k \geq 3)$ distinct intersections $v_{1}, v_{2}, \ldots v_{k}$, such that there is a road connecting v_{i} with v_{i+1} for all i from 1 to $k-1$, and there is a road connecting v_{k} and v_{1}.

Subtask 5 (points: 13)

$n \leq 100000$, there are no cycles in the street network.

Subtask 6 (points: 15)

$n \leq 1000$, for each intersection there is at most one cycle that contains it.

Subtask 7 (points: 20)

$n \leq 100000$, for each intersection there is at most one cycle that contains it.

Subtask 8 (points: 8)
$n \leq 1000, m \leq 2000$
Subtask 9 (points: 10)
$n \leq 100000, m \leq 200000$

Examples

	input	
4	3	
1	2	8
2	3	
3	4	
4	4	14
1	2	
2	3	
3	4	
4	2	

Note

In the first example there are 8 ways to choose the triple $(s, c, f):(1,2,3),(1,2,4),(1,3,4),(2,3,4)$, $(3,2,1),(4,2,1),(4,3,1),(4,3,2)$.

In the second example there are 14 ways to choose the triple $(s, c, f):(1,2,3),(1,2,4),(1,3,4),(1,4,3)$, $(2,3,4),(2,4,3),(3,2,1),(3,2,4),(3,4,1),(3,4,2),(4,2,1),(4,2,3),(4,3,1),(4,3,2)$.

