
39th Petrozavodsk Programming Camp
Day 3: Songyang Chen Contest 3, Sunday, August 23, 2020

Problem Tutorial: “Total Eclipse”
The vertices with the larger brightness will be removed later than those with the smaller brightness. Let’s
reverse the whole procedure: Sort vertices by brightness in non-increasing order, add vertices to the graph
one by one, and merge vertices into connected components. When a vertex x is added, for each edge (x, y),
if y is already added and y is not connected with x, merge x and y into a connected component, and set
the parent of the root of the component y to x using DSU.

Finally we will get several rooted trees. For a vertex x, it will be operated for bparentx times before bx
becomes the minimum brightness. Thus answer =

∑n
i=1 bi − bparenti .

Overall time complexity is O((n+m) log n).

Problem Tutorial: “Visual Cube”
Calculate the size of the picture and the locations of each object carefully, then you can draw the intended
picture.

Problem Tutorial: “Count on a Tree II Striking Back”
It is well-known that the expected value of the minimum value among k uniform random real numbers
in [0, 1] is 1

k+1 . For a set T of size k, if we assign a random integer weight to each element in T , get the
minimum weight of these k integers, and run this procedure several times, the smaller average minimum
weight will show the larger value of k.

In this problem, assign a random integer weight to each color, find the minimum weight on the chain, and
run this procedure k times. This way, we can know which chain has the larger number of distinct colors.

Overall time complexity is O(nk +mk log2 n).

Problem Tutorial: “Diamond Rush”

Assume the gray area is blocked, we can find that we will always go through a red cell or a green
cell. Let fi,j denote the best path going through the cell (i, j), gi,j = max(fi,1, fi,2, . . . , fi,j), and
hi,j = max(fi,j , fi,j+1, . . . , fi,n). Then we can answer a query using g and h in O(1) comparisons.

Note that the value of a path may be extremely large, but fortunately we can store them using persistent
segment tree with hashing on each node, such that we can copy in O(1), and modify a bit or do a
comparison in O(log n).

Overall complexity is O((n2 + q) log n).

Problem Tutorial: “New Equipments”
Let’s build a directed graph with n + |R| + 2 vertices (n workers, |R| pieces of equipment, the source S
and the sink T) and the following arcs:

Page 1 of 3

39th Petrozavodsk Programming Camp
Day 3: Songyang Chen Contest 3, Sunday, August 23, 2020

• S → each worker, the capacity is 1 and the cost is 0.

• Each piece of equipment → T , the capacity is 1 and the cost is 0.

• For the i-th worker, find the smallest n values of ai × j2 + bi × j + ci, add the corresponding j into
set R, add an arc i → j, the capacity is 1 and the cost is ai × j2 + bi × j + ci.

Now we will get a tiny graph, run MCMF (minimum cost maximum flow) on it and get the answer. There
is always an optimal solution only using these pieces of equipment.

Problem Tutorial: “The Missing Pet”
Denote si,j as all possible routes ending at (i, j), p(k) as the possibility of route k, len(k) as the length of
route k, fi,j =

∑
k∈si,j p(k), and gi,j =

∑
k∈si,j p(k) · len(k). The answer will be g, and we can calculate

g using f and Gauss-Jordan Elimination. Calculating f is similar to g, we need to use Gauss-Jordan
Elimination. There will be O(n2) variables and O(n2) equations, the straightforward algorithm is O(n6),
which is unfortunately too slow to pass this problem.

Let’s treat the cells with a hole and the cells in the first row as important cells. It turns out that, if
the values of important cells are known, we can calculate the values of all the remaining cells using those
equations. Assume there are cnt (cnt ≤ n + k) important cells, finally there will be exactly cnt unused
equations, just run Gauss-Jordan Elimination on it.

Overall complexity is O((n+ k)3).

Problem Tutorial: “In Search of Gold”
Binary search for the answer, now we just need to check whether there is a tree whose diameter is not
larger than mid .

Let’s set the root of the tree to 1. For the subtree of vertex i, its diameter should not exceed mid ,
and we want to minimize d(i): the distance between i and the farthest vertex in this subtree. Let fi,j
(j ≤ min(k, size(i))) denote the minimum value of d(i) such that there are exactly j values taken from a,
the transition is straightforward.

Overall time complexity is O(nk log ans).

Problem Tutorial: “Dynamic Convex Hull”
Let’s answer all queries offline. We can find that each function can update a continuous subsequence of
queries. Assume there are q queries, build a segment tree on [1, q]. For each function, find the range of
queries it can update, and insert it as a tag into O(log q) nodes on the segment tree.

Now for each node of the segment tree, we will have several functions and several queries. We want to
find the answer for each query just using these functions. There are two cases: ai ≤ x and ai ≥ x.

Take ai ≤ x for example: Sort functions by ai in non-decreasing order. Denote best(x) as the best function
for query x. it can be proved that best(x) ≥ best(x−1), so we can use the well-known divide-and-conquer
trick to find all the values of best(x) in O(B logA). Here, A denotes the number of queries and B denotes
the number of functions.

Overall time complexity is O((n+m) log2m).

Problem Tutorial: “It’s All Squares”
For each query, let’s find the bounding box of the polygon, assume its size is r× c, we can easily find the
answer in O(rc).

In the worst case, all the polygons are squares, a square of size k × k will consume 4k characters of the
input, so the overall complexity is O(n|S|4).

Page 2 of 3

39th Petrozavodsk Programming Camp
Day 3: Songyang Chen Contest 3, Sunday, August 23, 2020

Problem Tutorial: “Walking Plan”
Let Gi,j denote the length of the shortest one-way street from i to j, and let ft,i,j be the length of the
shortest path from i to j with exactly t streets. Then we have ft,i,j = min

1≤k≤n
(ft−1,i,k +Gk,j). We can also

find that ft,i,j = min
1≤k≤n

(fx,i,k + ft−x,k,j). If we treat them as matrices, we have ft = fx · ft−x = Gt.

Note that ki ≤ 10 000, let A = ⌊ k
100⌋ and B = k mod 100. We can split each query (s, t, k) into two phases:

• Walk from s to some vertex u, passing exactly 100A streets.

• Walk from u to t, passing at least B streets.

Let ai = G100i and bi = Gi. Then ai is the length of the shortest path with exactly 100i streets, bi (after
running an external Floyd-Warshall) is the length of of the shortest path with at least i streets. Now we
can answer a query by trying all possible values of u, thus ans = min

1≤u≤n
(aA,s,u + bB,u,t).

Overall time complexity is O(n3
√
k + qn).

Problem Tutorial: “King of Hot Pot”
We will show that we can construct the optimal solution incrementally. In other words, there exists a
permutation ord1, ord2, . . . , ordn such that the set {ord1, ord2, . . . , ordk} is an optimal solution for eating
k dishes of meat.

Assume we have already known which set of dishes to eat, we will always eat them in non-decreasing
order by ai. Initially ord = {}, let’s insert all the dishes into ord in non-decreasing order by ai.

Assume now we are going to insert a dish of meat (a, b). Let ti be the time to finish the first i dishes
ord1, ord2, . . . , ord i. If max(tj−1, a) + b < tj , it means that replacing ord j by the current dish (a, b) will
get a better solution. Note that if max(tj−1, a) + b < tj holds, max(tj , a) + b < tj+1 also holds, so we
just need to binary search for the smallest value of j, and insert the current dish (a, b) before ord j . After
insertion of (a, b), we should fix a suffix of t into max(t, a)+ b, which means eating one more dish of meat
(a, b) in each solution.

In order to speed up the algorithm, we can store ord and t in a binary search tree with lazy tag. Finally
the sequence t is the answer. Overall complexity is O(n log n).

Problem Tutorial: “String Distance”
It can be proved that the insertion is useless, so dis(A,B) = |A| + |B| − 2LCS(A,B). For each query,
let fi,j denote the minimum possible value of k such that LCS(B[1..i], A[l..k]) = j. Then we can find the
LCS in O(m2) for each query.

Page 3 of 3

