
39th Petrozavodsk Programming Camp

Day 4: Xi Lin Contest 6, Tuesday, August 25, 2020

Problem Tutorial: “Permutation”
We try to find the number of permutations that contain no arithmetic progression of length at least 3.

For small n (n ≤ 20), we have a very simple dynamic programming solution. Let dp(x, S) be the number

of ways such that the first x numbers are filled and the set of numbers used is S. We can simply enumerate

an i ̸∈ S such that there is no pair of (j, k) where j ∈ S, k ̸∈ S and 2i = j+k. And transfer from dp(x, S)

to dp(x+ 1, S ∪ {i}). The time complexity is O(2n · n2).

For large n, the restriction is actually very strong and the number of valid states S for each x is very

small. When n = 50, the number of states is roughly 106. We can use hash map or just sorted vector to

maintain the value. The time complexity is O(n2 · |S|).

We can also use some bitwise operations to eliminate the factor n in time complexity. For each i, we only

need to find some j and k such that k = 2i − j. If we store S in unsigned 64-bit integer, swap the high

and low 32 bits of S, we can get the representation of −j. And with some bitwise shift operations, we can

get all valid k. After that we can check if some i is valid in O(1).

Problem Tutorial: “Tree Product”
Apparently, we can ignore all trees with one vertex.

Consider the diameter of A×B for two trees A and B, it would be

max{diameter(A) + 2 · height(B), diameter(B)}.

Since 2 · height(B) will always be greater than or equal to diameter(B). The diameter of A × B will be

diameter(A) + 2 · height(B).

For a given permutation p1, p2, . . . , pn, the diameter of Tp1 × Tp2 × . . .× Tpn will be

diameter(Tp1) + 2 ·
n∑

i=2

height(TPi)

Just compute the value of 2 ·
∑n

i=1 height(Ti) and enumerate p1, then we can easily find the minimum

diameter and the maximum diameter.

Problem Tutorial: “Distinct Number”
Let’s build the trie of the n intervals. The size maybe very large, but we can ignore the subtrees which

contain all the possible leaves (i.e. complete binary tree). The actual size of this compressed trie will be

O(n logA), where A = max(ri).

Consider the i-th bit of y:

• If it is 0, for each node in the trie, we need to merge the right subtree to the left subtree.

• If it is 1, we do nothing for each node in the trie.

It can be proved that if we have a proper implementation for merging, the time complexity will be

O(n2 logA) or even O(n2):
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• Implement the trie using pointers for left and right children.

• Merge the subtree of size a and b in O(min(a, b)) time.

• When meeting a subtree which is a complete binary tree, terminal this merging.

The number of leaves in the final trie is the size of S.

Problem Tutorial: “Fibonacci Partition”
Consider the Zenkorf representation of X: X =

∞∑
i=1

ai · Fi, where ai ∈ {0, 1} and ai · ai+1 = 0.

Let the indices of non-zero terms ai be p1, p2, . . . , pm. We can use the following greedy algorithm to find

the answer:

1. Start from answer = 0 and last = 0.

2. For each i = 1, 2, . . . ,m:

• if pi − last ≥ 3, let answer be answer + ⌈pi−last
2 ⌉ and last be pi − 1;

• otherwise, let answer be answer + 1 and last be pi.

If we use a binary search tree (like Treap) to maintain the sequence {pi}, the value of answer can be

calculated easily. The problem is how to maintain the sequence when X changes.

Let’s change the definition of Fn in the problem: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, and generalize the

definition to negative integers n. We can see that F−n = (−1)n+1Fn.

Combining with Lucas numbers，L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2，we have:

Lk · Fn = Fn+k + (−1)kFn−k

If we partition a into several Lucas numbers (actually, the greedy algorithm also leads to a unique

representation like Fibonacci number), with the above formula, we only need to care about add / subtract

a Fibonacci number to / from X. This makes the problem easier.

After some observations, we can find that the change only affects the maximal consecutive alternating

segment (a segment of the form 10101...10101) in the Zenkorf representation of X. So, we can use binary

search tree to maintain the maximal consecutive segments.

The following article helps a lot: http://www.algonotes.com/en/fibonacci-arithmetic/.

Let’s consider how to add Fx to X first:

1. If ax−1 = ax = ax+1 = 0, we can simply make ax = 1.

2. At least one of ax−1, ax and ax+1 is non-zero. Assume the lower and upper bounds of the maximal

consecutive alternating segment containing this non-zero value are l and r:

• x = r + 1, we need to make ar = 0 and ar+2 = 1.
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• l ≤ x ≤ r and x ≡ l (mod 2), we need to make al = al+2 = . . . = ar = 0 and

al+1 = al+3 = . . . = ax−1 = ar+1 = al−2 = 1.

• l ≤ x ≤ r and x ̸≡ l (mod 2), we need to make ax+1 = ax+3 = . . . = ar = 0 and ar+1 = 1.

Note that if we make ar+2 or al−2 be 1, adjacent 1s may appear in the Zenkorf representation. To eliminate

this, we can just repeat the above procedure recursively. And only constant number of recursive calls will

trigger.

As for subtracting a Fibonacci number Fx from X, we can use similar analysis.

The whole time complexity will be O(n log2A), where A = max(ai, bi).

Problem Tutorial: “Longest Common Subsequence”
This problem tries to find a common subsequence in the form 1x2y3z and the value x+y+z is maximum.

Let’s try to fix x and z, we need to find the x first 1 and the z last 3 in a or b. After that, let the remaining

subsegment in a and b be [la, ra] and [lb, rb]. The value of y will just be the minimum occurrence of 2 in

each of the subsegment.

Let sa(i) be the number 2 in a1, a2, . . . , ai and sb(i) be the number of 2 in b1, b2, . . . , bi. We can formula

the above description as:

min(sa(ra)− sa(la − 1), sb(rb)− sb(lb − 1)).

Consider sa(ra)− sa(la − 1) ≥ sb(rb)− sb(lb − 1) first, i.e. sa(ra)− sb(rb) ≥ sb(lb − 1)− sa(la − 1). The

optimal value is sb(rb)− sb(lb− 1)+ z. We can use a data structure to maintain the key = sa(ra)− sb(rb)

and value = z − sb(lb − 1). And if we enumerate x from n to 1, and add the corresponding item

with key = sa(ra) − sb(rb) into the data structure, we can query the suffix minimum value of

key ≥ sb(lb − 1)− sa(la − 1) to get the optimal value.

And for sa(ra) − sa(la − 1) ≤ sb(rb) − sb(lb − 1), the case is similar. Since we only need to query suffix

minimum value, we can use binary index tree.

The time complexity is O(n log n).

And there also exists an O(n) solution which is left as a challenge for participants.

Problem Tutorial: “Necklace”
Let the number of gems of color i in the the necklace be cnt(i). A necklace of length m is good iff

m ≥ 2 ·maxi(cnt(i)).

Let the maximum value of cnt(i) be x. For gems with color i, only the largest x values could be on the

necklace: let it be Vi.

Let V be V1 ∪ V2 ∪ . . . ∪ Vn. If we sort the values in V in decreasing order, the first 2x (except x = 1, we

need at least 3 values) must be taken. For the remaining values, we can take all positive values. This will

definitely give us the best solution.

We can use priority queue to speed up the procedure. When x becomes x + 1, only new values will be

added to V . We can use a minimum heap A to maintain the first 2x values, and a maximum heap B to
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maintain the remaining values. For the newly added values, we add them to B first. After that, take top

values from B to make the size of A at least 2(x+ 1). Also, take top positive values from B to A.

As for the solution, we can find the optimal x and try to simulate the above procedure using the optimal

x to get a valid solution.

Problem Tutorial: “Paper-cutting”
Let’s find out all possible rectangles after several foldings first. Apparently, we can consider the row and

column folding separately. We only focus the row foldings.

Let dp(i) denote whether the i-th row could be the left border of the final rectangle. It can be see that

dp(i) is true if there exists some j that dp(j) is true and rjrj+1 . . . r2i−j−1 is palindrome.

We can use Manacher’s algorithm to find the palindromic radius ri for each even length palindrome, and

maintain the maximum index j that dp(j) is true, and check whether i− ri ≤ j to determine the value of

dp(i).

As for the possible right, up and down border of the final rectangle, the process is similar.

Now, we can have a O(n2m2) solution to enumerate all possible borders and find the number of connected

components.

Actually, only O(nm) possible rectangle should be considered. For each left border li, we can find a

minimum right border ri ≥ li. And for each up border uj , we can find a minimum down border dj ≥ uj .

For each lj and uj , it can be showed that checking ri and dj is enough. Since large ri or dj will definitely

make the number of connected components larger.

For each connected component, we can find a minimum-area rectangle Ck = (x1, x2, y1, y2) (with sides

parallel to the matrix sides) that covers all cells of the component. For a possible final rectangle

Ri,j = (li, ri, uj , dj), the number of connected components is the number of rectangles Ck which has

intersection with Ri,j .

We can do a sweep line on the li and add each Ck that the range [x1, x2] has intersection with range

[li, ri]. And in the mean time, we can maintain the value of y1 and y2 using two binary index trees. For

each uj and dj , the the number of connected components could be answered using the two binary index

trees.

There is a hidden assumption make the above algorithm work: r1 ≤ r2 ≤ . . . ≤ rs and d1 ≤ d2 ≤ . . . ≤ dt.

The overall time complexity will be O(nm log nm).

Problem Tutorial: “Partition Number”
Let p(m) be the number of solutions of equation x1 + x2 + . . . + xk = m such that x1 ≤ x2 ≤ . . . ≤ xk.

Actually, it is the partition number. And let odd(x) and even(x) be the number of ways summing up to

x using odd or even distinct numbers from A, respectively.

The answer for the problem will be:
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m∑
i=0

(even(i)− odd(i)) · p(m− i)

which can be proved using inclusion-exclusion principle.

The value of odd(x) and even(x) can be calculated using simple dynamic programming. And the value

of p(x) can be calculated using the classic dynamic programming or pentagonal number theorem in

O(m
√
m). Also, polynomial inversion and fast Fourier transform work in O(m logm).

Problem Tutorial: “Stirling Number”
Let us calculate the value of (

∑m
k=0

[
n
k

]
) mod p.

Consider the proof of Lucas’ theorem:

(
n′p+ n0

k′p+ k0

)
≡

(
n′

k′

)(
n0

k0

)
(mod p)

Using (x+ 1)n
′p+n0 = (x+ 1)n

′p(x+ 1)n0 , (x+ 1)p ≡= xp + 1 (mod p) and binomial expansion, we can

easily prove the Lucas’ theorem.

Now, is well known that the coefficients of sn(x) = x(x+ 1)(x+ 2) . . . (x+ n− 1) are
[
n
0

]
,
[
n
1

]
, . . . ,

[
n
n

]
.

We can find that sp(x) ≡ xp − x (mod p).

Let n = n′p+ n0, and then

sn(x) =
n′−1∏
t=0

(x+ tp)(x+ tp+ 1) . . . (x+ tp+ p− 1) ·
n0−1∏
r=0

(x+ n′p+ r)

≡
n′−1∏
t=0

x(x+ 1) . . . (x+ p− 1) ·
n0−1∏
r=0

(x+ r) ≡ sn
′

p (x)sn0(x)

≡ (xp − x)n
′
sn0(x) (mod p)

Using the binomial expansion, we have:

[
n

k

]
≡ (−1)n′−j

(
n′

j

)[
n0

i

]
(mod p)

where k = n′ + j(p− 1) + i, and 0 ≤ i < p− 1 if n0 = 0 or 0 < i ≤ p− 1 if n0 > 0.

After enumerating i, we only need to find the value of:

⌊m−i−n′
p−1

⌋∑
j=0

(−1)n′−j

(
n′

j

)

We can rephrase it as: given n, m, and x, find the value of
m∑
i=0

(
n
i

)
xi.

Notice that we can use a process like Lucas’ theorem to divide xn: xn ≡ x
⌊n
p
⌋ · xn mod p (mod p). So xi

and
(
n
i

)
can be divided together using the Lucas’ theorem.
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After that we have:

m∑
i=0

(
n

i

)
xi =

⌊m
p
⌋−1∑

t=0

(
⌊np ⌋
t

)
xt ·

p−1∑
r=0

(
n mod p

r

)
xr +

(
n div p

m div p

)
· xm div p ·

m mod p∑
r=0

(
n mod p

r

)
xr

Since n is a given number, there are only O(log n) different values of n mod p. We can precalculate the

prefix sum of
(
n mod p

r

)
xr for each distinct n mod p.

Or just use the following formula to speed up:

m∑
k=0

(−1)k
(
s

k

)
= (−1)m

(
s− 1

m

)
After that, we can use divide and conquer to find the coefficients of sn0(x) in O(n0 log n0) time.

The total time complexity will be O(p log p).

Problem Tutorial: “Ternary String Counting”
Let’s try the O(n3) solution first. Let ways(i, j, k) be the number of ways that we have to fill the values

of s1, s2, . . . , si, and the nearest two different characters are at position j and k (i > j > k).

Each of the m restrictions actually determines the ranges of j and k. For each valid j and k that:

j ∈ [jmini, jmax i] and k ∈ [kmini, kmax i], we have the following transitions:

1. ways(i+ 1, i, k)
+← ways(i, j, k)

2. ways(i+ 1, i, j)
+← ways(i, j, k)

3. ways(i+ 1, j, k)
+← ways(i, j, k)

We can see easily that the first dimension of ways(·, ·, ·) is useless: in the first two cases, the second

dimension will always be i, and in the third case, j and k will never change.

Actually the transitions are equivalent to: for a given rectangle R, make all the entries outside R be zero

and:

1. find the sum of a specific row,

2. find the sum of a specific column,

3. do not change the values.

We can also see that, if an entry becomes zero, it will always be zero. And for a fixed row, the non-zero

entries form a consecutive range.

For each row i of the dynamic programming array, we can maintain the boundaries left i and right i of the

non-zero entries. For each row and column, we can maintain the row-sum and column-sum.
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For each rectangle R, we can just clear the entries for each row and maintain the row-sum or column-sum

in the mean time.

The time and space complexity is O(n2).

Problem Tutorial: “Anti-hash Test”
Let’s build the suffix automaton of the Thue-Morse word of order m and compact all states with only

single outgoing edge. Actually, this is the CSAM of the Thue-Morse word of order m.

For large m (m > 5), we can find some periodic patterns in the CSAM. We can use brutal method for

m ≤ 5 and clever method based on the periodic patterns for m > 5.

The figure below is the CSAM of Thue-Mors word of order m:

More specifically, the leftmost state S is the starting state and the rightmost state T is the ending state. If

we label the states in the first row as x0, x1, . . . , xn−2 and label the states in the last row as y0, y1, . . . , yn−1

and the middle ones are u2, u3, . . . , un−2 and v2, v3, . . . , vn−2, the transition in each edge will be:

xi
τ i−→ xi+1, xi

τi−1−→ ui+1

yi
τi−→ yi+1, yi

τ i−1−→ vi+1

ui
τi−1−→ xi+1, ui

τ ′i−→ yi+1

vi
τ i−1−→ yi+1, vi

τ ′i−→ xi+1

where τi is the Thue-Morse word of order i, τ i is the inversion of τi, τ ′i = τ i−2τ i−1, τ ′i is the inversion of

τ ′i .

The transitions from xn−2, yn−2, un−2, vn−2 to T are different:

xn−2

τ ′n−1−→ T, xn−2
τ ′n−→ T

yn−2
τn−1−→ T, yn−2

τn−2−→ T

un−2

τ ′n−2−→ T, un−2
τn−3τn−1−→ T

vn−2
τn−3−→ T, vn−2

τ ′n−2τn−1−→ T

And in addition, T, xn−2, yn−3, xn−4, yn−5, . . . are the accepting states.

Actually, we don’t need to build the whole CSAM : only the first O(log |u|) states are enough.
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We can find the corresponding state of string u and find the size of the right set. The size of the right set

is the number of different path ending in an accepting state, which can be calculated easily. This solves

the first problem.

As for the second problem, we need to find the right set of other states. And also only O(log |u|) states

are needed. Since the size of Right(xi) is greater than or equal to Right(xi+1).

Problem Tutorial: “Tokens on the Tree”
Let’s try to fix w and b first. And without loss of generality, we can assume w ≥ b.

Let S be the set of vertices which must be in the white connected component.

• S ̸= ∅. After deleting all vertices in S, we will have some connected components. We can see that

f(w, b) will be the number of connected components whose size is at least b.

• S = ∅. We can see that f(w, b) will only be 1 or 2. And f(w, b) will be 1 if and only if there exists

a vertex u such that, after deleting this vertex, there exist at least three connected components, the

size of two of them ≥ w and the size of the remaining one ≥ b.

We can solve the problem based on the above observation.

Let’s try to fix the value of w. A vertex x must be in the white connected component if an only if the

maximum size of the subtree of x is less than or equal to w.

When w = n, all the vertices are in the white connected component. As w decreases, the size of S will

decrease too. We can use a disjoint-set data structure to maintain the sizes of the connected components.

For the fixed w, if S is nonempty, we need to find the value of

w ·

min(w,n−w)∑
b=1

b · f(w, b)

 .

When maintaining the size of the remaining connected components, we can use a segment tree or binary

index tree to maintain the value of s(x), which means the number of connected components whose size

≥ x, and the value of s(x) · x.

The value of
min(w,n−w)∑

b=1

b · f(w, b) is just a range sum in the segment tree or binary index tree.

If S is empty, we need to maintain some other information. We only need to know the number of b which

makes f(w, b) = 1. For each vertex x, we need to maintain whether it has at least two subtrees with size

≥ w and the size of the third largest subtrees.

For each vertex x, we maintain the sorted list Lx of subtree in the decreasing order of subtree size. As w

decreases, we can pop the corresponding subtree from each Lx and find the maximum value bound of the

size of the third largest subtree.

For b ≤ min(w, bound), the value of f(w, b) is 1. And for bound < b ≤ w, the value of f(w, b) is 2.

The time complexity is O(n log n).
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Problem Tutorial: “A + B Problem”
The following greedy method works for this problem, the proof is omitted: we try to fill 0 in the least

significant bit. And in this way, we will maximize the benefit of each 1.

Consider assigning each bit from left to right:

• If it is 0, we will try to assign this 0 to the number which has less bits unassigned.

• If it is 1, we will first assign this 1 to the number which has less bits unassigned. Assume this 1 is

in the x-th position, we need to check if we can assign 1 to another number until the x-th position

and still have enough bits to assign the remaining unassigned bits. If this is true, we can keep this

number (it makes no difference to which number we assign this 1, and we should keep the higher

bit for the incoming 1s). Otherwise, we should assign this 1 to another number.
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