NCPC 2020

Presentation of solutions

2020-11-07

NCPC 2020 solutions



Problems prepared by

@ Per Austrin (KTH Royal Institute of Technology)
Bjarki Agiist Gudmundsson (Reykjavik University)
Nils Gustafsson (V&rdinnovation)

Antti Laaksonen (CSES)

Simon Lindholm (Vardinnovation)

UIf Lundstrém (Excillum)

Jimmy Mérdell (Spotify)

Johan Sannemo (Huawei)

Bergur Snorrason (University of Iceland)

Pehr Séderman (Kattis)

NCPC 2020 solutions



M — Methodic Multiplication

Multiply two natural numbers in Peano arithmetic.

Author: Per Austrin NCPC 2020 solutions



M — Methodic Multiplication

Multiply two natural numbers in Peano arithmetic.

Axiomatic Solution

main :- read_val(X), read_val(Y), multiply(X, Y, Z), print(Z).

multiply(_, 0, 0).
multiply(X, s(Y), Z) :- multiply(X, Y, W), add(W, X, Z).

add(X, 0, X).
add(X, s(Y), Z) :- add(X, Y, W, Z = s(W).

read_val(0) :- peek_code(C), code_type(C, space), !, get_char(_).
read_val(s(X)) :- get_char(C), == 25’ ! read_val(X).
read_val (X) :- read_val(X).

Author: Per Austrin NCPC 2020 solutions



M — Methodic Multiplication

Multiply two natural numbers in Peano arithmetic.

Non-Axiomatic Solution

input () .count (’S?)

y = input().count(’S?)

Z = X*y

print(’S(C’*z + ’0% + ?)’%z)

Author: Per Austrin NCPC 2020 solutions



M — Methodic Multiplication

Multiply two natural numbers in Peano arithmetic.

Non-Axiomatic Solution

input () .count (’S?)

y = input().count(’S?)

Z = x*y

print(PS(P*z + 207 + ?)’xz)

Statistics at 4-hour mark: 317 submissions, 188 accepted, first after 00:01



C — Coin Stacks

Each stack has some number of coins. Can you remove all coins by taking one coin
from two distinct stacks on each move?

Author: Antti Laaksonen NCPC 2020 solutions



C — Coin Stacks

Each stack has some number of coins. Can you remove all coins by taking one coin
from two distinct stacks on each move?

@ You can remove all coins if
(A) the number of coins is even and
(B) no stack has more coins than all other stacks together

Author: Antti Laaksonen NCPC 2020 solutions



C — Coin Stacks

Each stack has some number of coins. Can you remove all coins by taking one coin
from two distinct stacks on each move?

@ You can remove all coins if
(A) the number of coins is even and
(B) no stack has more coins than all other stacks together

@ One possible strategy: always choose the two stacks with largest number of coins.

Author: Antti Laaksonen NCPC 2020 solutions



C — Coin Stacks

Each stack has some number of coins. Can you remove all coins by taking one coin
from two distinct stacks on each move?

@ You can remove all coins if
(A) the number of coins is even and
(B) no stack has more coins than all other stacks together

@ One possible strategy: always choose the two stacks with largest number of coins.
© Easy to prove that if (A) and (B) hold before such a move, they also hold after.

Author: Antti Laaksonen NCPC 2020 solutions



C — Coin Stacks

Each stack has some number of coins. Can you remove all coins by taking one coin
from two distinct stacks on each move?

@ You can remove all coins if
(A) the number of coins is even and
(B) no stack has more coins than all other stacks together

@ One possible strategy: always choose the two stacks with largest number of coins.
© Easy to prove that if (A) and (B) hold before such a move, they also hold after.

Statistics at 4-hour mark: 555 submissions, 146 accepted, first after 00:07

Author: Antti Laaksonen NCPC 2020 solutions



A — Array of Discord

Given a sorted list of 100 integers, change one digit in one number to make it unsorted.

Author: Nils Gustafsson NCPC 2020 solutions



A — Array of Discord

Given a sorted list of 100 integers, change one digit in one number to make it unsorted.

@ Try all possible ways of changing a digit, check if the resulting list is unsorted.

(Sufficient to only try changing the most significant digit to a 0, 1 or 9 but this
optimization is not needed.)

Author: Nils Gustafsson NCPC 2020 solutions



A — Array of Discord

Given a sorted list of 100 integers, change one digit in one number to make it unsorted.

@ Try all possible ways of changing a digit, check if the resulting list is unsorted.

(Sufficient to only try changing the most significant digit to a 0, 1 or 9 but this
optimization is not needed.)

@ Potential pitfall: be careful with leading Os.
E.g. cannot change 124 into 024 but can change 4 into 0.

Author: Nils Gustafsson NCPC 2020 solutions



A — Array of Discord

Given a sorted list of 100 integers, change one digit in one number to make it unsorted.

@ Try all possible ways of changing a digit, check if the resulting list is unsorted.

(Sufficient to only try changing the most significant digit to a 0, 1 or 9 but this
optimization is not needed.)

@ Potential pitfall: be careful with leading Os.
E.g. cannot change 124 into 024 but can change 4 into 0.

Statistics at 4-hour mark: 811 submissions, 125 accepted, first after 00:04

Author: Nils Gustafsson NCPC 2020 solutions



D — Dams in Distress

We get a rooted tree forming a system of n < 200000 dams. Overflowing a dam causes
it to break and release all its water downstream. What is minimum amount of water we
need to add at one dam in order for w units of water to reach the root?

© For each dam i compute how much water (i) is needed if we add water at i.

Author: Pehr Sderman NCPC 2020 solutions



D — Dams in Distress

We get a rooted tree forming a system of n < 200000 dams. Overflowing a dam causes
it to break and release all its water downstream. What is minimum amount of water we
need to add at one dam in order for w units of water to reach the root?

© For each dam i compute how much water (i) is needed if we add water at i.
@ For the root, (i) = w.

Author: Pehr Sderman NCPC 2020 solutions



D — Dams in Distress

We get a rooted tree forming a system of n < 200000 dams. Overflowing a dam causes
it to break and release all its water downstream. What is minimum amount of water we
need to add at one dam in order for w units of water to reach the root?

© For each dam i compute how much water (i) is needed if we add water at i.
@ For the root, (i) = w.

© For non-root with parent p;, capacity ¢; and currently u; water in it:

o Need to add ¢; — u; water to break the dam, this causes ¢; water to go upstream.
o Need to add f(p;) water at p;, so need to add f(p;) — ¢; more water if f(p;) > c;.

Author: Pehr Sderman NCPC 2020 solutions



D — Dams in Distress

We get a rooted tree forming a system of n < 200000 dams. Overflowing a dam causes
it to break and release all its water downstream. What is minimum amount of water we
need to add at one dam in order for w units of water to reach the root?

© For each dam i compute how much water (i) is needed if we add water at i.
@ For the root, (i) = w.

© For non-root with parent p;, capacity ¢; and currently u; water in it:

o Need to add ¢; — u; water to break the dam, this causes ¢; water to go upstream.
o Need to add f(p;) water at p;, so need to add f(p;) — ¢; more water if f(p;) > c;.

Gives equation (i) = ¢; — u; + max(0, f(p;) — ¢;).

Author: Pehr Sderman NCPC 2020 solutions



D — Dams in Distress

We get a rooted tree forming a system of n < 200000 dams. Overflowing a dam causes
it to break and release all its water downstream. What is minimum amount of water we
need to add at one dam in order for w units of water to reach the root?

© For each dam i compute how much water (i) is needed if we add water at i.
@ For the root, (i) = w.

© For non-root with parent p;, capacity ¢; and currently u; water in it:

o Need to add ¢; — u; water to break the dam, this causes ¢; water to go upstream.
o Need to add f(p;) water at p;, so need to add f(p;) — ¢; more water if f(p;) > c;.

Gives equation (i) = ¢; — u; + max(0, f(p;) — ¢;).
© Complexity O(n) — compute top-down so f(p;) is known when computing (/).

Author: Pehr Sderman NCPC 2020 solutions



D — Dams in Distress

We get a rooted tree forming a system of n < 200000 dams. Overflowing a dam causes
it to break and release all its water downstream. What is minimum amount of water we
need to add at one dam in order for w units of water to reach the root?

© For each dam i compute how much water (i) is needed if we add water at i.
@ For the root, (i) = w.

© For non-root with parent p;, capacity ¢; and currently u; water in it:

o Need to add ¢; — u; water to break the dam, this causes ¢; water to go upstream.
o Need to add f(p;) water at p;, so need to add f(p;) — ¢; more water if f(p;) > c;.

Gives equation (i) = ¢; — u; + max(0, f(p;) — ¢;).
© Complexity O(n) — compute top-down so f(p;) is known when computing (/).

Statistics at 4-hour mark: 270 submissions, 90 accepted, first after 00:32

Author: Pehr Sderman NCPC 2020 solutions



G — Gig Combinatorics

Given sequence of n < 10° digits 1/2/3, count how many subsequences have the form
“12+3" (“2+" means 1 or more twos)

Author: Bergur Snorrason and Eyleifur Ingbér Bjarkason NCPC 2020 solutions



G — Gig Combinatorics

Given sequence of n < 10° digits 1/2/3, count how many subsequences have the form
“12+3" (“2+" means 1 or more twos)

@ Let ones(i) be number of ones up to position i in the sequence.

Author: Bergur Snorrason and Eyleifur Ingbér Bjarkason NCPC 2020 solutions



G — Gig Combinatorics

Given sequence of n < 10° digits 1/2/3, count how many subsequences have the form
“12+3" (“2+" means 1 or more twos)

@ Let ones(i) be number of ones up to position i in the sequence.

@ Let p(i) be number of subsequences of form “12+" on the first / digits.

Author: Bergur Snorrason and Eyleifur Ingbér Bjarkason NCPC 2020 solutions



G — Gig Combinatorics

Given sequence of n < 10° digits 1/2/3, count how many subsequences have the form
“12+3" (“2+" means 1 or more twos)

@ Let ones(i) be number of ones up to position i in the sequence.

@ Let p(i) be number of subsequences of form “12+" on the first / digits.
o If ith digit is 2 then p(i) =2 p(i — 1) + ones(/)

Author: Bergur Snorrason and Eyleifur Ingbér Bjarkason NCPC 2020 solutions



G — Gig Combinatorics

Given sequence of n < 10° digits 1/2/3, count how many subsequences have the form
“12+3" (“2+" means 1 or more twos)

@ Let ones(i) be number of ones up to position i in the sequence.

@ Let p(i) be number of subsequences of form “12+" on the first / digits.
o If ith digit is 2 then p(i) =2 p(i — 1) + ones(/)
o Otherwise p(i) = p(i — 1)

Author: Bergur Snorrason and Eyleifur Ingbér Bjarkason NCPC 2020 solutions



G — Gig Combinatorics

Given sequence of n < 10° digits 1/2/3, count how many subsequences have the form
“12+3" (“2+" means 1 or more twos)

@ Let ones(i) be number of ones up to position i in the sequence.

@ Let p(i) be number of subsequences of form “12+" on the first / digits.
o If ith digit is 2 then p(i) =2 p(i — 1) + ones(/)
o Otherwise p(i) = p(i — 1)

© Answer is sum of p(i) over all positions i where there we have a 3.

Author: Bergur Snorrason and Eyleifur Ingbér Bjarkason NCPC 2020 solutions



G — Gig Combinatorics

Given sequence of n < 10° digits 1/2/3, count how many subsequences have the form
“12+3" (“2+" means 1 or more twos)

@ Let ones(i) be number of ones up to position i in the sequence.

@ Let p(i) be number of subsequences of form “12+" on the first / digits.
o If ith digit is 2 then p(i) =2 p(i — 1) + ones(/)
o Otherwise p(i) = p(i — 1)

© Answer is sum of p(i) over all positions i where there we have a 3.

Q Time complexity O(n).

Author: Bergur Snorrason and Eyleifur Ingbér Bjarkason NCPC 2020 solutions



G — Gig Combinatorics

Given sequence of n < 10° digits 1/2/3, count how many subsequences have the form
“12+3" (“2+" means 1 or more twos)

@ Let ones(i) be number of ones up to position i in the sequence.

@ Let p(i) be number of subsequences of form “12+" on the first / digits.
o If ith digit is 2 then p(i) =2 p(i — 1) + ones(/)
o Otherwise p(i) = p(i — 1)

© Answer is sum of p(i) over all positions i where there we have a 3.

Q Time complexity O(n).

Statistics at 4-hour mark: 437 submissions, 78 accepted, first after 00:04

Author: Bergur Snorrason and Eyleifur Ingbér Bjarkason NCPC 2020 solutions



J — Joining Flows

Given k < 10 faucets with different temperatures and adjustable flow levels, determine
if they can be combined to produce given flow level and temperature.

Author: Nils Gustafsson NCPC 2020 solutions



J — Joining Flows

Given k < 10 faucets with different temperatures and adjustable flow levels, determine
if they can be combined to produce given flow level and temperature.

© Check that desired flow is at least min possible flow and at most max possible flow.

Author: Nils Gustafsson NCPC 2020 solutions



J — Joining Flows

Given k < 10 faucets with different temperatures and adjustable flow levels, determine
if they can be combined to produce given flow level and temperature.

© Check that desired flow is at least min possible flow and at most max possible flow.

@ Find smallest possible temperature at the desired flow level:

— need to use a; flow from each faucet
— then greedily fill up remaining desired flow using lowest temperature faucets.

Author: Nils Gustafsson NCPC 2020 solutions



J — Joining Flows

Given k < 10 faucets with different temperatures and adjustable flow levels, determine
if they can be combined to produce given flow level and temperature.

© Check that desired flow is at least min possible flow and at most max possible flow.

@ Find smallest possible temperature at the desired flow level:

— need to use a; flow from each faucet
— then greedily fill up remaining desired flow using lowest temperature faucets.

© Similarly find largest possible temperature.

Author: Nils Gustafsson NCPC 2020 solutions



J — Joining Flows

Given k < 10 faucets with different temperatures and adjustable flow levels, determine
if they can be combined to produce given flow level and temperature.

© Check that desired flow is at least min possible flow and at most max possible flow.

@ Find smallest possible temperature at the desired flow level:
— need to use a; flow from each faucet
— then greedily fill up remaining desired flow using lowest temperature faucets.

Similarly find largest possible temperature.

© 0

If the desired temperature is in this range, it can be achieved.

Author: Nils Gustafsson NCPC 2020 solutions



J — Joining Flows

Given k < 10 faucets with different temperatures and adjustable flow levels, determine
if they can be combined to produce given flow level and temperature.

© Check that desired flow is at least min possible flow and at most max possible flow.

@ Find smallest possible temperature at the desired flow level:
— need to use a; flow from each faucet
— then greedily fill up remaining desired flow using lowest temperature faucets.

Similarly find largest possible temperature.

If the desired temperature is in this range, it can be achieved.

© 00

Time complexity O(k) per query. (Can also be done in O(log k) time per query.)

Author: Nils Gustafsson NCPC 2020 solutions



J — Joining Flows

Given k < 10 faucets with different temperatures and adjustable flow levels, determine
if they can be combined to produce given flow level and temperature.

© Check that desired flow is at least min possible flow and at most max possible flow.

@ Find smallest possible temperature at the desired flow level:
— need to use a; flow from each faucet
— then greedily fill up remaining desired flow using lowest temperature faucets.

© Similarly find largest possible temperature.

Q |If the desired temperature is in this range, it can be achieved.

© Time complexity O(k) per query. (Can also be done in O(log k) time per query.)
Statistics at 4-hour mark: 128 submissions, 46 accepted, first after 00:44

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

Problem

We have one movie and n critics with opinions xi, ..., X, on how good it is.

If current review average of the movie exceeds a reviewers opinion they will score it 0,
otherwise they will score it m.

Order the critics so that the film ends up getting review average exactly k/n.

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

We have one movie and n critics with opinions xi, ..., X, on how good it is.

If current review average of the movie exceeds a reviewers opinion they will score it 0,
otherwise they will score it m.

Order the critics so that the film ends up getting review average exactly k/n.

Initial observations

@ Each review is either positive (score m) or negative (score 0).

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

We have one movie and n critics with opinions xi, ..., X, on how good it is.

If current review average of the movie exceeds a reviewers opinion they will score it 0,
otherwise they will score it m.

Order the critics so that the film ends up getting review average exactly k/n.

Initial observations
@ Each review is either positive (score m) or negative (score 0).

@ If there are p positive reviews, final review average is pm/n.

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

We have one movie and n critics with opinions xi, ..., X, on how good it is.

If current review average of the movie exceeds a reviewers opinion they will score it 0,
otherwise they will score it m.

Order the critics so that the film ends up getting review average exactly k/n.

Initial observations
@ Each review is either positive (score m) or negative (score 0).
@ If there are p positive reviews, final review average is pm/n.

© So k must be divisible by m (otherwise impossible),
and we need exactly p = k/m positive reviews.

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

O Key insights:

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

© Key insights:we may assume that
e the p highest x;'s will give a positive review, and the others a negative review.

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

© Key insights:we may assume that

e the p highest x;'s will give a positive review, and the others a negative review.
e the positive reviewers will come in increasing order of x;
(and negative reviews in decreasing order)

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

© Key insights:we may assume that
e the p highest x;'s will give a positive review, and the others a negative review.
e the positive reviewers will come in increasing order of x;
(and negative reviews in decreasing order)
@ Build the answer iteratively. Each iteration, two candidates for next reviewer:

o lowest remaining x; from among the p largest, or
o largest remaining x; form among the n — p smallest

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

© Key insights:we may assume that
e the p highest x;'s will give a positive review, and the others a negative review.
e the positive reviewers will come in increasing order of x;
(and negative reviews in decreasing order)
@ Build the answer iteratively. Each iteration, two candidates for next reviewer:
o lowest remaining x; from among the p largest, or
o largest remaining x; form among the n — p smallest
© Pick one that yields the desired outcome (positive or negative) given the current
review average.

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

© Key insights:we may assume that
e the p highest x;'s will give a positive review, and the others a negative review.
e the positive reviewers will come in increasing order of x;
(and negative reviews in decreasing order)
@ Build the answer iteratively. Each iteration, two candidates for next reviewer:
o lowest remaining x; from among the p largest, or
o largest remaining x; form among the n — p smallest
© Pick one that yields the desired outcome (positive or negative) given the current
review average.

Q If no such choice then ordering is impossible (can happen if one of the groups
has become empty and the other has remaining x; too low/high for desired result).

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

© Key insights:we may assume that

e the p highest x;'s will give a positive review, and the others a negative review.
e the positive reviewers will come in increasing order of x;
(and negative reviews in decreasing order)

@ Build the answer iteratively. Each iteration, two candidates for next reviewer:

o lowest remaining x; from among the p largest, or
o largest remaining x; form among the n — p smallest

© Pick one that yields the desired outcome (positive or negative) given the current
review average.

Q If no such choice then ordering is impossible (can happen if one of the groups
has become empty and the other has remaining x; too low/high for desired result).

@ Time complexity O(nlog n) for sorting then O(n).

Author: Nils Gustafsson NCPC 2020 solutions



F — Film Critics

© Key insights:we may assume that
e the p highest x;'s will give a positive review, and the others a negative review.
e the positive reviewers will come in increasing order of x;
(and negative reviews in decreasing order)
@ Build the answer iteratively. Each iteration, two candidates for next reviewer:
o lowest remaining x; from among the p largest, or
o largest remaining x; form among the n — p smallest
© Pick one that yields the desired outcome (positive or negative) given the current
review average.

Q If no such choice then ordering is impossible (can happen if one of the groups
has become empty and the other has remaining x; too low/high for desired result).

@ Time complexity O(nlog n) for sorting then O(n).

Statistics at 4-hour mark: 62 submissions, 21 accepted, first after 00:43



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

Solution
Simplifying assumptions:
© A and B have the same number of digits (or zero-pad)
@ it is always the first integer we add to (try both options; take the best one)

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

O If digits in ith position have a; + b; > 10 there is a carry in ith position.

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

Solution

O If digits in ith position have a; + b; > 10 there is a carry in ith position.

@ We must increment a; and decrement b; (mod 10) until there is no longer carry.

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

Solution

O If digits in ith position have a; + b; > 10 there is a carry in ith position.
@ We must increment a; and decrement b; (mod 10) until there is no longer carry.

© This happens when a; turns to 0 (i.e. we add 9 — a;).

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

O If digits in ith position have a; + b; > 10 there is a carry in ith position.
@ We must increment a; and decrement b; (mod 10) until there is no longer carry.

© This happens when a; turns to 0 (i.e. we add 9 — a;).

© If i is the leftmost digit causing carry, turning it to 0 will turn all remaining digits
to 0 as well and get rid of any carries there.

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

O If digits in ith position have a; + b; > 10 there is a carry in ith position.

@ We must increment a; and decrement b; (mod 10) until there is no longer carry.
© This happens when a; turns to 0 (i.e. we add 9 — a;).

© If i is the leftmost digit causing carry, turning it to 0 will turn all remaining digits
to 0 as well and get rid of any carries there.

@ Lets us compute A + X easily, subtract A to get X.

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

© Caveat: turning the leftmost carry a; into a 0 causes a;_; to increase by 1, can
cause a new carry in the previous digit.

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

Solution

© Caveat: turning the leftmost carry a; into a 0 causes a;_; to increase by 1, can
cause a new carry in the previous digit.

@ Any preceding sequence of digits summing to 9 must also get their a;’s turned to 0.

Example:
A =1811765432113

B = 111234567897
Target A+ X = 812000000000

Author: Johan Sannemo NCPC 2020 solutions



K — Keep Calm and Carry Off

Given two 1000 000-digit integers A and B, find the smallest non-negative integer X
such that A+ X and B — X (or A— X and B + X) can be added without carry.

Solution

© Caveat: turning the leftmost carry a; into a 0 causes a;_; to increase by 1, can
cause a new carry in the previous digit.

@ Any preceding sequence of digits summing to 9 must also get their a;’s turned to 0.

Example:
A =1811765432113

B = 111234567897
Target A+ X = 812000000000

Statistics at 4-hour mark: 115 submissions, 11 accepted, first after 00:44

Author: Johan Sannemo NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Problem

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Solution

Line segments of the polygon induce half-planes:
In order for points along that wall not to be
obscured, we cannot be behind that wall.

\

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Line segments of the polygon induce half-planes:
In order for points along that wall not to be
obscured, we cannot be behind that wall.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Problem

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Solution

: : N \Y
Line segments of the polygon induce half-planes: \
In order for points along that wall not to be
obscured, we cannot be behind that wall.

Author: Jimmy Mardell NCPC 2020 solutions




B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

\l

Line segments of the polygon induce half-planes:
In order for points along that wall not to be
obscured, we cannot be behind that wall.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Problem

Given polygon-shaped map of a room, find region from which all parts of the room can

.

Solution

Line segments of the polygon induce half-planes:
In order for points along that wall not to be

obscured, we cannot be behind that wall. \

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Problem

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Solution

Line segments of the polygon induce half-planes: W \
In order for points along that wall not to be §
obscured, we cannot be behind that wall. \

: \ W\

Author: Jimmy Mardell NCPC 2020 solutions




B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Solution
SN
AN

Line segments of the polygon induce half-planes: \
In order for points along that wall not to be
obscured, we cannot be behind that wall.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Problem

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Solution

Line segments of the polygon induce half-planes:
In order for points along that wall not to be
obscured, we cannot be behind that wall.

Seeing all parts of the room

)

Not “behind” any wall

0

Inside the intersection of the n half-planes.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Finding intersection of half-spaces

@ Divide and conquer algorithm for intersection of half-spaces:

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Finding intersection of half-spaces

@ Divide and conquer algorithm for intersection of half-spaces:
@ Split the half-spaces into two groups H; and H, of roughly n/2 half-spaces each.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Finding intersection of half-spaces

@ Divide and conquer algorithm for intersection of half-spaces:

@ Split the half-spaces into two groups H; and H, of roughly n/2 half-spaces each.
© Recursively compute intersection K; of half-spaces in H;

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Finding intersection of half-spaces

@ Divide and conquer algorithm for intersection of half-spaces:
@ Split the half-spaces into two groups H; and H, of roughly n/2 half-spaces each.
© Recursively compute intersection K; of half-spaces in H;
© Recursively compute intersection K, of half-spaces in H,

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Finding intersection of half-spaces

@ Divide and conquer algorithm for intersection of half-spaces:
@ Split the half-spaces into two groups H; and H, of roughly n/2 half-spaces each.
© Recursively compute intersection K; of half-spaces in H;
© Recursively compute intersection K, of half-spaces in H,
© Compute intersection of K; and K>

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Finding intersection of half-spaces

@ Divide and conquer algorithm for intersection of half-spaces:
@ Split the half-spaces into two groups H; and H, of roughly n/2 half-spaces each.
© Recursively compute intersection K; of half-spaces in H;
© Recursively compute intersection K, of half-spaces in H,
© Compute intersection of K; and K>

@ Analysis:

@ Ki and K are convex regions (possibly unbounded), can compute their intersection
in O(n) time.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Finding intersection of half-spaces

@ Divide and conquer algorithm for intersection of half-spaces:
@ Split the half-spaces into two groups H; and H, of roughly n/2 half-spaces each.
© Recursively compute intersection K; of half-spaces in H;
© Recursively compute intersection K, of half-spaces in H,
© Compute intersection of K; and K>

@ Analysis:

@ Ki and K are convex regions (possibly unbounded), can compute their intersection
in O(n) time.
@ Get recurrence T(n) =2T(n/2) + O(n), yields O(nlog n) time complexity.

Author: Jimmy Mardell NCPC 2020 solutions



B — Big Brother

Given polygon-shaped map of a room, find region from which all parts of the room can
be seen.

Finding intersection of half-spaces

@ Divide and conquer algorithm for intersection of half-spaces:
@ Split the half-spaces into two groups H; and H, of roughly n/2 half-spaces each.
© Recursively compute intersection K; of half-spaces in H;
© Recursively compute intersection K, of half-spaces in H,
© Compute intersection of K; and K>
@ Analysis:
@ Ki and K are convex regions (possibly unbounded), can compute their intersection
in O(n) time.
@ Get recurrence T(n) =2T(n/2) + O(n), yields O(nlog n) time complexity.
Statistics at 4-hour mark: 36 submissions, 11 accepted, first after 00:28



| — Infection Estimation

Estimate within a factor 2 the number of infected people in a population, using 50 tests
of the form “choose k people at random and check if at least one of them is infected”.

Author: Simon Lindholm NCPC 2020 solutions



| — Infection Estimation

Estimate within a factor 2 the number of infected people in a population, using 50 tests
of the form “choose k people at random and check if at least one of them is infected”.

Solution

@ To reduce number of possible answers, only consider answers
100, 100-1.01, 100-1.01%, ... 100-1.01', ... 5-10°
(around log; o1 (5 - 10°) ~ 1500 different values)

Author: Simon Lindholm NCPC 2020 solutions



| — Infection Estimation

Estimate within a factor 2 the number of infected people in a population, using 50 tests
of the form “choose k people at random and check if at least one of them is infected”.

Solution

@ To reduce number of possible answers, only consider answers
100, 100-1.01, 100-1.01%, ... 100-1.01', ... 5-10°
(around log; o1 (5 - 10°) ~ 1500 different values)

@ Maintain probability distribution of likelihood of each answer (initially uniform).

Author: Simon Lindholm NCPC 2020 solutions



| — Infection Estimation

Estimate within a factor 2 the number of infected people in a population, using 50 tests
of the form “choose k people at random and check if at least one of them is infected”.

Solution

@ To reduce number of possible answers, only consider answers
100, 100-1.01, 100-1.01%, ... 100-1.01', ... 5-10°
(around log; o1 (5 - 10°) ~ 1500 different values)

@ Maintain probability distribution of likelihood of each answer (initially uniform).
© Each round, choose k such that test result yes/no probability is close to 50-50.

Author: Simon Lindholm NCPC 2020 solutions



| — Infection Estimation

Estimate within a factor 2 the number of infected people in a population, using 50 tests
of the form “choose k people at random and check if at least one of them is infected”.

Solution

@ To reduce number of possible answers, only consider answers
100, 100-1.01, 100-1.01%, ... 100-1.01', ... 5-10°
(around log; o1 (5 - 10°) ~ 1500 different values)

@ Maintain probability distribution of likelihood of each answer (initially uniform).
© Each round, choose k such that test result yes/no probability is close to 50-50.
© Given result, update likelihoods using Bayes's theorem

Pr[yes | infected = t] - Pr[infected = t]

Prlinfected = t | yes] = Pl el
y

Author: Simon Lindholm NCPC 2020 solutions



| — Infection Estimation

Estimate within a factor 2 the number of infected people in a population, using 50 tests
of the form “choose k people at random and check if at least one of them is infected”.

@ To reduce number of possible answers, only consider answers
100, 100-1.01, 100-1.01%, ... 100-1.01', ... 5-10°
(around log; o1 (5 - 10°) ~ 1500 different values)

@ Maintain probability distribution of likelihood of each answer (initially uniform).

© Each round, choose k such that test result yes/no probability is close to 50-50.
© Given result, update likelihoods using Bayes's theorem
Pr[yes | infected = t] - Pr[infected = t]

Prlinfected = t | yes] = Pl el
y

Statistics at 4-hour mark: 46 submissions, 6 accepted, first after 01:03



E — Exhaustive Experiment

Problem

We have n points which are potentially faulty. We can test points but tests only tell us
if there is a faulty point within a cone above the test point. Given test results what is
minimum number of faulty points?

Solution (1/2)

v

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Problem

We have n points which are potentially faulty. We can test points but tests only tell us
if there is a faulty point within a cone above the test point. Given test results what is
minimum number of faulty points?

Solution (1/2)

R
v

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Problem

We have n points which are potentially faulty. We can test points but tests only tell us
if there is a faulty point within a cone above the test point. Given test results what is
minimum number of faulty points?

Solution (1/2)

© First let us simplify the geometry: scale x-coordinate by 2 and rotate 45 degrees
A

<
v

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Problem

We have n points which are potentially faulty. We can test points but tests only tell us
if there is a faulty point within a cone above the test point. Given test results what is
minimum number of faulty points?

Solution (1/2)

© First let us simplify the geometry: scale x-coordinate by 2 and rotate 45 degrees
A A

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Problem

We have n points which are potentially faulty. We can test points but tests only tell us
if there is a faulty point within a cone above the test point. Given test results what is
minimum number of faulty points?

Solution (1/2)

© First let us simplify the geometry: scale x-coordinate by 2 and rotate 45 degrees
A A

.? . .?

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Problem

We have n points which are potentially faulty. We can test points but tests only tell us
if there is a faulty point within a cone above the test point. Given test results what is
minimum number of faulty points?

Solution (1/2)

© First let us simplify the geometry: scale x-coordinate by 2 and rotate 45 degrees
A A

.? . .?

<
v
v

N* N°®

@ Now cone of points affected becomes a quadrant!

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.

© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.

© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)

@ Greedily find smallest possible number of positive points:

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.
@ When explanation for positive test needed, use best potentially faulty one seen so far.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.
@ When explanation for positive test needed, use best potentially faulty one seen so far.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.
@ When explanation for positive test needed, use best potentially faulty one seen so far.

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.
@ When explanation for positive test needed, use best potentially faulty one seen so far.

e Time complexity O(nlog n) for sorting then O(n).

Author: UIf Lundstrém NCPC 2020 solutions



E — Exhaustive Experiment

Solution (2/2)

@ Negative tests: nothing in upper right quadrant of negative test can be faulty.
© Sweep from left to right, maintaining minimum y-coordinate of a negative point seen
@ Points above current minimum must also be negative (if marked P = “impossible”)
@ Greedily find smallest possible number of positive points:

© Sweep from right to left, maintaining maximum y-coordinate of a faulty point, and
maximum y-coordinate of a potentially faulty point.
@ When explanation for positive test needed, use best potentially faulty one seen so far.

e Time complexity O(nlog n) for sorting then O(n).

Statistics at 4-hour mark: 18 submissions, 3 accepted, first after 01:14



H — Hiring and Firing

Problem

A company hires and fires workers over up to 100000 days. Assign an HR employee to
each day so that for each worker a different HR employee is assigned the day they are
hired and the day they are fired. Minimize number of HR employees used.

Solution (1/3)

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Problem

A company hires and fires workers over up to 100000 days. Assign an HR employee to
each day so that for each worker a different HR employee is assigned the day they are
hired and the day they are fired. Minimize number of HR employees used.

Solution (1/3)
@ The hiring/firings form a graph: each day is a vertex, and each worker is an edge
between the day they are hired and the day they are fired.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Problem

A company hires and fires workers over up to 100000 days. Assign an HR employee to
each day so that for each worker a different HR employee is assigned the day they are
hired and the day they are fired. Minimize number of HR employees used.

Solution (1/3)
@ The hiring/firings form a graph: each day is a vertex, and each worker is an edge
between the day they are hired and the day they are fired.
@ We seek the chromatic number of this graph.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Problem

A company hires and fires workers over up to 100000 days. Assign an HR employee to
each day so that for each worker a different HR employee is assigned the day they are
hired and the day they are fired. Minimize number of HR employees used.

Solution (1/3)
@ The hiring/firings form a graph: each day is a vertex, and each worker is an edge
between the day they are hired and the day they are fired.
@ We seek the chromatic number of this graph.
© Graph coloring is NP-hard in general and even in planar graphs.

Author: Bjarki Agist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Problem

A company hires and fires workers over up to 100000 days. Assign an HR employee to
each day so that for each worker a different HR employee is assigned the day they are
hired and the day they are fired. Minimize number of HR employees used.

Solution (1/3)
@ The hiring/firings form a graph: each day is a vertex, and each worker is an edge
between the day they are hired and the day they are fired.
@ We seek the chromatic number of this graph.

© Graph coloring is NP-hard in general and even in planar graphs.
But these graphs are special... what do they look like?

Author: Bjarki Agist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)
© Mark the days on a timeline and draw an arc for each worker:

impossible

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

A e

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)
© Mark the days on a timeline and draw an arc for each worker:

N

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.

NCPC 2020 solutions

Author: Bjarki Agiist Gudmundsson



H — Hiring and Firing

Solution (2/3)
© Mark the days on a timeline and draw an arc for each worker:

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.

NCPC 2020 solutions

Author: Bjarki Agiist Gudmundsson



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

DW

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.

@ Recurse on subproblems and repeat. Use a valid color for the middle vertex.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

AN

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.

@ Recurse on subproblems and repeat. Use a valid color for the middle vertex.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

A

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.

@ Recurse on subproblems and repeat. Use a valid color for the middle vertex.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

A

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.

@ Recurse on subproblems and repeat. Use a valid color for the middle vertex.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.

@ Recurse on subproblems and repeat. Use a valid color for the middle vertex.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.
@ Recurse on subproblems and repeat. Use a valid color for the middle vertex.

@ In each subproblem, only left & right of current range have already been colored.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

© Mark the days on a timeline and draw an arc for each worker:

@ Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

© Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

@ No-crossing property = separation into two independent subproblems.
@ Recurse on subproblems and repeat. Use a valid color for the middle vertex.

@ In each subproblem, only left & right of current range have already been colored.
So if we have three colors, will always be a choice available for the middle vertex.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (2/3)

o

Mark the days on a timeline and draw an arc for each worker:

Because of last-in-first-out order of hirings and firings, cannot be any crossing arcs.

Gives rise to a recursive structure that we can use to color the graph:
start with longest edge from leftmost vertex and color its endpoints arbitrarily

No-crossing property = separation into two independent subproblems.
Recurse on subproblems and repeat. Use a valid color for the middle vertex.

In each subproblem, only left & right of current range have already been colored.
So if we have three colors, will always be a choice available for the middle vertex.
In other words, 3 colors is always enough!

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (3/3)
© Check if graph is 2-colorable (or 1-colorable), standard algorithm.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (3/3)
© Check if graph is 2-colorable (or 1-colorable), standard algorithm.

@ If not, construct a 3-coloring using the procedure described before
(or in some other way, many similar strategies work)

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (3/3)
© Check if graph is 2-colorable (or 1-colorable), standard algorithm.

@ If not, construct a 3-coloring using the procedure described before
(or in some other way, many similar strategies work)

© Can be implemented in O(n) time.

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



H — Hiring and Firing

Solution (3/3)
© Check if graph is 2-colorable (or 1-colorable), standard algorithm.

@ If not, construct a 3-coloring using the procedure described before
(or in some other way, many similar strategies work)

© Can be implemented in O(n) time.

Statistics at 4-hour mark: 22 submissions, 0 accepted, first after N/A

Author: Bjarki Agiist Gudmundsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

Author: Nils Gustafsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

@ Try to partition grid into three disjoint connected regions with following property:

for every cell (i,) there is a neighboring cell (i, ) belonging to a different region.

Author: Nils Gustafsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

@ Try to partition grid into three disjoint connected regions with following property:

for every cell (i,) there is a neighboring cell (i, ) belonging to a different region.

@ If we manage to find this, problem becomes easy:

Author: Nils Gustafsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

@ Try to partition grid into three disjoint connected regions with following property:

for every cell (i,) there is a neighboring cell (i, ) belonging to a different region.

@ If we manage to find this, problem becomes easy:
o Use the partition as a starting point.

Author: Nils Gustafsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

@ Try to partition grid into three disjoint connected regions with following property:

for every cell (i,) there is a neighboring cell (i, ) belonging to a different region.

@ If we manage to find this, problem becomes easy:

o Use the partition as a starting point.
o For every cell (7, /) where two or more regions should overlap, extend the region from

(i',j") into (i,J).

Author: Nils Gustafsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

© How to find the starting point partition?

Author: Nils Gustafsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

© How to find the starting point partition? ACCCCecee
ACBBBBBBB
ACBCCCCCB
ACBCCCBCB
ACBBBBBCB
ACCCCCCCB

@ If dimensions not too small, one possible pattern —

Author: Nils Gustafsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

Solution (2/2)

© How to find the starting point partition? ACCCCCCCe

@ If dimensions not too small, one possible pattern — ACEBBBBEB
ACBCCCCCB

ACBCCCBCB

© Case when dimensions are small is left as exercise...
— when at least two rows and columns the above works ACBBBBBCB
— case with only one row or one column easy to solve directly ACCCCCCCB

Author: Nils Gustafsson NCPC 2020 solutions



L — Language Survey

Find three connected regions in a grid. For each cell prescribed whether it should
contain a single region or at least two different regions.

Solution (2/2)

© How to find the starting point partition? ACCCCCCCC

@ If dimensions not too small, one possible pattern — ACEBBBBEB
ACBCCCCCB

ACBCCCBCB

© Case when dimensions are small is left as exercise...
— when at least two rows and columns the above works ACBBBBBCB
— case with only one row or one column easy to solve directly ACCCCCCCB

Statistics at 4-hour mark: 5 submissions, 0 accepted, first after N/A

Author: Nils Gustafsson NCPC 2020 solutions



Results!

NCPC 2020 solutions



