
Petrozavodsk Camp, Day 1: Solutions

Jagiellonian University in Kraków

29.01.2021

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 1 / 70

Problem F A Very Different Word

Problem F
A Very Different Word

Author: Krzysztof Maziarz

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 2 / 70

Problem F A Very Different Word

Statement

Given two words s, t of the same length n ≤ 25 000 and a letter K , find a
word x which contains K and is lexicographically between s and t,
provided that s is lexicographically smaller than t.

Solution

Denote by next(s) the next word (in the lexicographic order) after s which
has length n, and next2(s) = next(next(s)), etc. Notice that if we consider
all words from next(s) till next26(s), last letters of these words will cover
the English alphabet. That means we can check only the next 26 words
and we are guaranteed to find one which contains the letter K – unless we
reach the word t first, in which case we need to output NO. Complexity:
O(n + Σ) or O(nΣ) depending on how we check for the letter K .

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 3 / 70

Problem F A Very Different Word

Statement

Given two words s, t of the same length n ≤ 25 000 and a letter K , find a
word x which contains K and is lexicographically between s and t,
provided that s is lexicographically smaller than t.

Solution

Denote by next(s) the next word (in the lexicographic order) after s which
has length n, and next2(s) = next(next(s)), etc. Notice that if we consider
all words from next(s) till next26(s), last letters of these words will cover
the English alphabet. That means we can check only the next 26 words
and we are guaranteed to find one which contains the letter K – unless we
reach the word t first, in which case we need to output NO. Complexity:
O(n + Σ) or O(nΣ) depending on how we check for the letter K .

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 3 / 70

Problem I GCD vs. XOR

Problem I
GCD vs. XOR

Author: Krzysztof Maziarz

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 4 / 70

Problem I GCD vs. XOR

Given a sequence of integers a1, . . . , an we must find the number of pairs
(ai , aj) satisfying gcd(ai , aj) = ai ⊕ aj . We know that a1, . . . , an ∈ [1,M].

First, as M is relatively small, we can solve the problem assuming that all
numbers between 1 and M may appear in input. For every x ∈ [1,M] we
denote by C [x] the number of x values in the input sequence.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 5 / 70

Problem I GCD vs. XOR

Given a sequence of integers a1, . . . , an we must find the number of pairs
(ai , aj) satisfying gcd(ai , aj) = ai ⊕ aj . We know that a1, . . . , an ∈ [1,M].

First, as M is relatively small, we can solve the problem assuming that all
numbers between 1 and M may appear in input. For every x ∈ [1,M] we
denote by C [x] the number of x values in the input sequence.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 5 / 70

Problem I GCD vs. XOR

Slower solution

Let us guess d ∈ [1,M] and compute how many pairs (x , y) may satisfy
gcd(x , y) = x ⊕ y = d . Obviously, x must be a multiple of d .

We also guess x = k · d for k ∈ [1, Md]. Now y is uniquely determined, as
it must be y = x ⊕ d . Then we can calculate y and check if x < y and
gcd(x , y) = d . If so, we have found C [x] · C [y] solutions.

This algorithm works in
∑M

d=1
M
d · logM = O(M log2 M).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 6 / 70

Problem I GCD vs. XOR

Slower solution

Let us guess d ∈ [1,M] and compute how many pairs (x , y) may satisfy
gcd(x , y) = x ⊕ y = d . Obviously, x must be a multiple of d .

We also guess x = k · d for k ∈ [1, Md]. Now y is uniquely determined, as
it must be y = x ⊕ d . Then we can calculate y and check if x < y and
gcd(x , y) = d . If so, we have found C [x] · C [y] solutions.

This algorithm works in
∑M

d=1
M
d · logM = O(M log2 M).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 6 / 70

Problem I GCD vs. XOR

Slower solution

Let us guess d ∈ [1,M] and compute how many pairs (x , y) may satisfy
gcd(x , y) = x ⊕ y = d . Obviously, x must be a multiple of d .

We also guess x = k · d for k ∈ [1, Md]. Now y is uniquely determined, as
it must be y = x ⊕ d . Then we can calculate y and check if x < y and
gcd(x , y) = d . If so, we have found C [x] · C [y] solutions.

This algorithm works in
∑M

d=1
M
d · logM = O(M log2 M).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 6 / 70

Problem I GCD vs. XOR

Faster solution

We can do better: in fact, for given x and d , the only possible y is x + d .

Proof: let 2j ≤ d < 2j+1, so the j-th bit is the highest in d . Then the
number x ⊕ d can only differ from x on j lowest bits, so
x ⊕ d ≤ x + 2j+1 − 1, which means x ⊕ d < x + 2d .

It is then enough to check y = x + d . As gcd(x , y) = d is now
guaranteed, we only have to check if x ⊕ y = d . This is O(M logM).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 7 / 70

Problem I GCD vs. XOR

Faster solution

We can do better: in fact, for given x and d , the only possible y is x + d .

Proof: let 2j ≤ d < 2j+1, so the j-th bit is the highest in d . Then the
number x ⊕ d can only differ from x on j lowest bits, so
x ⊕ d ≤ x + 2j+1 − 1, which means x ⊕ d < x + 2d .

It is then enough to check y = x + d . As gcd(x , y) = d is now
guaranteed, we only have to check if x ⊕ y = d . This is O(M logM).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 7 / 70

Problem I GCD vs. XOR

Faster solution

We can do better: in fact, for given x and d , the only possible y is x + d .

Proof: let 2j ≤ d < 2j+1, so the j-th bit is the highest in d . Then the
number x ⊕ d can only differ from x on j lowest bits, so
x ⊕ d ≤ x + 2j+1 − 1, which means x ⊕ d < x + 2d .

It is then enough to check y = x + d . As gcd(x , y) = d is now
guaranteed, we only have to check if x ⊕ y = d . This is O(M logM).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 7 / 70

Problem C Jellyfish

Problem C
Jellyfish

Author: Marcin Briański

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 8 / 70

Problem C Jellyfish

Statement

We are given a jellyfisha J with n vertices (3 ≤ n ≤ 100 000). We say that
A ⊆ V (J) is awesome if for every B ⊆ A there exists a connected subgraph
of J which contains every vertex from B and does not contain any other
vertex from A. What is the maximum possible size of an awesome A?

aA connected graph with equal number of vertices and edges.

Solution

Let’s try to derive a solution for a tree T , because trees are somewhat
similar to jellyfish, but have easier structure.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 9 / 70

Problem C Jellyfish

Statement

We are given a jellyfisha J with n vertices (3 ≤ n ≤ 100 000). We say that
A ⊆ V (J) is awesome if for every B ⊆ A there exists a connected subgraph
of J which contains every vertex from B and does not contain any other
vertex from A. What is the maximum possible size of an awesome A?

aA connected graph with equal number of vertices and edges.

Solution

Let’s try to derive a solution for a tree T , because trees are somewhat
similar to jellyfish, but have easier structure.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 9 / 70

Problem C Jellyfish

Lemma

Let T be a tree with n vertices. The maximum size of an awesome subset
of T is the number of leaves of T .

Proof.

If n ≤ 2 then the statement is trivial. Otherwise, let’s root our tree in
a non-leaf vertex.

On one hand, it’s obvious that if we take any subset of leaves we can
connect them without touching any other leaf. We can just throw out
the other leaves from the tree and that’s it.

On the other hand, we can see that we can modify every optimal
solutions such that all the leaves are occupied (easy exercise).

If all the leaves are occupied, we cannot occupy any other vertex of
the tree.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 10 / 70

Problem C Jellyfish

Lemma

Let T be a tree with n vertices. The maximum size of an awesome subset
of T is the number of leaves of T .

Proof.

If n ≤ 2 then the statement is trivial. Otherwise, let’s root our tree in
a non-leaf vertex.

On one hand, it’s obvious that if we take any subset of leaves we can
connect them without touching any other leaf. We can just throw out
the other leaves from the tree and that’s it.

On the other hand, we can see that we can modify every optimal
solutions such that all the leaves are occupied (easy exercise).

If all the leaves are occupied, we cannot occupy any other vertex of
the tree.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 10 / 70

Problem C Jellyfish

From this moment, it’s easy to see that the answer for a jellyfish would be
the number of leaves plus a small constant which depends on J.

Theorem

Let J be a jellyfish with n vertices. Let A be the number of leaves of J,
and let B be the maximum number of consecutive vertices of the jellyfish
cycle without proper subtree. Then the answer for the jellyfish is
max(3,A + min(B, 2)).

To prove this statement we need the following lemma.

Lemma

Let J be a jellyfish. There exists a maximum awesome subset S of J which
contains all the leaves from J.

The proof is similar to the proof for trees and consists of several cases. For
the sake of clarity, we omit the proof, but it’s not too hard.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 11 / 70

Problem C Jellyfish

From this moment, it’s easy to see that the answer for a jellyfish would be
the number of leaves plus a small constant which depends on J.

Theorem

Let J be a jellyfish with n vertices. Let A be the number of leaves of J,
and let B be the maximum number of consecutive vertices of the jellyfish
cycle without proper subtree. Then the answer for the jellyfish is
max(3,A + min(B, 2)).

To prove this statement we need the following lemma.

Lemma

Let J be a jellyfish. There exists a maximum awesome subset S of J which
contains all the leaves from J.

The proof is similar to the proof for trees and consists of several cases. For
the sake of clarity, we omit the proof, but it’s not too hard.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 11 / 70

Problem C Jellyfish

Theorem

Let J be a jellyfish with n vertices. Let A be the number of leaves of T ,
and let B be the maximum number of consecutive vertices of the jellyfish
cycle without proper subtree. Then the answer for the jellyfish is
max(3,A + min(B, 2)).

Proof.

Obviously, we always can occupy 3 vertices on the jellyfish cycle.
Unfortunately, we cannot occupy any other vertex in this case.

From the previous lemma, we can occupy all the leaves of the jellyfish.

If there is no vertex with empty subtree on a cycle then we can do
nothing better.

If there is a vertex with empty subtree then we can occupy such a
vertex.

If there are two consecutive vertices with empty subtrees we can
occupy both of them.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 12 / 70

Problem G Cactus

Problem G
Cactus

Author: Krzysztof Maziarz

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 13 / 70

Problem G Cactus

Statement

Given a cactus grapha with n vertices and a number k, count the number
of colorings of the cactus vertices into k colors such that no two connected
vertices have the same color.
aA connected graph where each vertex lies on at most one cycle.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 14 / 70

Problem G Cactus

Let’s solve progressively harder graph types.

Path

Number of colorings is path[n] = k · (k − 1)n−1

Cycle

We take all colorings for a path, and then subtract colorings where the
first and last vertex has the same color: cycle[n] = path[n]− cycle[n − 1]

What about a cactus?

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 15 / 70

Problem G Cactus

Let’s solve progressively harder graph types.

Path

Number of colorings is path[n] = k · (k − 1)n−1

Cycle

We take all colorings for a path, and then subtract colorings where the
first and last vertex has the same color: cycle[n] = path[n]− cycle[n − 1]

What about a cactus?

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 15 / 70

Problem G Cactus

Let’s solve progressively harder graph types.

Path

Number of colorings is path[n] = k · (k − 1)n−1

Cycle

We take all colorings for a path, and then subtract colorings where the
first and last vertex has the same color: cycle[n] = path[n]− cycle[n − 1]

What about a cactus?

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 15 / 70

Problem G Cactus

Let’s solve progressively harder graph types.

Path

Number of colorings is path[n] = k · (k − 1)n−1

Cycle

We take all colorings for a path, and then subtract colorings where the
first and last vertex has the same color: cycle[n] = path[n]− cycle[n − 1]

What about a cactus?

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 15 / 70

Problem G Cactus

First, lets remove all tree edges from the cactus, to get a collection of
cycles and isolated vertices.

For each such component we know the number of colorings, and we
multiply all these numbers together.

Each tree edge connects one components (either a cycle or a single vertex)
to its parent component. Once we have colored the parent component,
this will block a single color in a single vertex of the child component.

For each tree edge, we have to multiply our number of colorings by k−1
k to

account for the one blocked color.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 16 / 70

Problem G Cactus

First, lets remove all tree edges from the cactus, to get a collection of
cycles and isolated vertices.

For each such component we know the number of colorings, and we
multiply all these numbers together.

Each tree edge connects one components (either a cycle or a single vertex)
to its parent component. Once we have colored the parent component,
this will block a single color in a single vertex of the child component.

For each tree edge, we have to multiply our number of colorings by k−1
k to

account for the one blocked color.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 16 / 70

Problem G Cactus

First, lets remove all tree edges from the cactus, to get a collection of
cycles and isolated vertices.

For each such component we know the number of colorings, and we
multiply all these numbers together.

Each tree edge connects one components (either a cycle or a single vertex)
to its parent component. Once we have colored the parent component,
this will block a single color in a single vertex of the child component.

For each tree edge, we have to multiply our number of colorings by k−1
k to

account for the one blocked color.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 16 / 70

Problem K We apologize,for any inconvenience

Problem K
We apologize

for any inconvenience

Author: Krzysztof Kleiner

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 17 / 70

Problem K We apologize,for any inconvenience

Statement

There are n stops and k tram lines, each serving some subset of the stops.
Then one of the lines gets suspended, then another, and then another...
After each suspension event, determine the largesta number of line
changes necessary to travel from any stop to any other.

aExcluding the “infinity” values.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 18 / 70

Problem K We apologize,for any inconvenience

We create a graph with a vertex for each stop and a vertex for each line.
We add an edge whenever a given line serves a given stop.

Observation

Travelling between two stops requires c changes ⇐⇒ their respective
vertices are at distance 2(c + 1).

We can compute all those distances in O((n + k)3). We would just need
to find an algorithm allowing us to accommodate the disappearing lines...

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 19 / 70

Problem K We apologize,for any inconvenience

We create a graph with a vertex for each stop and a vertex for each line.
We add an edge whenever a given line serves a given stop.

Observation

Travelling between two stops requires c changes ⇐⇒ their respective
vertices are at distance 2(c + 1).

We can compute all those distances in O((n + k)3). We would just need
to find an algorithm allowing us to accommodate the disappearing lines...

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 19 / 70

Problem K We apologize,for any inconvenience

We create a graph with a vertex for each stop and a vertex for each line.
We add an edge whenever a given line serves a given stop.

Observation

Travelling between two stops requires c changes ⇐⇒ their respective
vertices are at distance 2(c + 1).

We can compute all those distances in O((n + k)3). We would just need
to find an algorithm allowing us to accommodate the disappearing lines...

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 19 / 70

Problem K We apologize,for any inconvenience

Which is precisely what the standard solution does anyway.

In its i-th iteration, the Floyd-Warshall algorithm computes the lengths of
the shortest paths between all pairs of vertices, using only the first i
vertices as intermediate points.

Solution

Sort the vertices in the following order:
The vertices for all the stops,
The vertices for those lines which are never suspended,
The vertices for the remaining lines, in the reversed order of
disappearing.

Run Floyd-Warshall.

Complexity: O((n + k)3).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 20 / 70

Problem K We apologize,for any inconvenience

Which is precisely what the standard solution does anyway.

In its i-th iteration, the Floyd-Warshall algorithm computes the lengths of
the shortest paths between all pairs of vertices, using only the first i
vertices as intermediate points.

Solution

Sort the vertices in the following order:
The vertices for all the stops,
The vertices for those lines which are never suspended,
The vertices for the remaining lines, in the reversed order of
disappearing.

Run Floyd-Warshall.

Complexity: O((n + k)3).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 20 / 70

Problem K We apologize,for any inconvenience

Solution

Sort the vertices in the following order:
The vertices for all the stops,
The vertices for those lines which are never suspended,
The vertices for the remaining lines, in the reversed order of
disappearing.

Run Floyd-Warshall.

Notes:

We need to take the maximum over the distances between stop vertices
only, not the graph’s diameter. It is possible for a line-line pair of vertices
to be at a distance strictly larger than the maximum over the stop-stop
pairs.

The first n iterations actually compute paths of length 2 only.
By performing this step separately, we can reduce O((n + k)3) to
O((n + k)2 · k), but this wasn’t needed to fit within the time limit.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 21 / 70

Problem K We apologize,for any inconvenience

Solution

Sort the vertices in the following order:
The vertices for all the stops,
The vertices for those lines which are never suspended,
The vertices for the remaining lines, in the reversed order of
disappearing.

Run Floyd-Warshall.

Notes:

We need to take the maximum over the distances between stop vertices
only, not the graph’s diameter. It is possible for a line-line pair of vertices
to be at a distance strictly larger than the maximum over the stop-stop
pairs.

The first n iterations actually compute paths of length 2 only.
By performing this step separately, we can reduce O((n + k)3) to
O((n + k)2 · k), but this wasn’t needed to fit within the time limit.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 21 / 70

Problem M Social Justice

Problem M
Social Justice

Author: Krzysztof Kleiner

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 22 / 70

Problem M Social Justice

Statement

Social justice is when nobody earns more than K times the average pay of
the citizens. Given n people, we want to banish as few people as
possible such that the remaining citizens form a socially just set (if there is
more than one way to achieve this, we might choose any correct solution).
Find those people who definitely cannot be allowed to stay in the town.

The answer does not need to contain only the highest-earning or the
lowest-earning citizens:

1, 1, 1, 10, 300, 300, 300

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 23 / 70

Problem M Social Justice

Statement

Social justice is when nobody earns more than K times the average pay of
the citizens. Given n people, we want to banish as few people as
possible such that the remaining citizens form a socially just set (if there is
more than one way to achieve this, we might choose any correct solution).
Find those people who definitely cannot be allowed to stay in the town.

The answer does not need to contain only the highest-earning or the
lowest-earning citizens:

1, 1, 1, 10, 300, 300, 300

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 23 / 70

Problem M Social Justice

Sort the citizens by salaries.

Observation

If there exists a socially just subset of size m, then:

there exists a socially just subset of size m which is an interval,

there exist such subsets for every m′ < m.

Proof: Removing the lowest-earning citizen is always safe: the average pay
increases (or stays the same), while the maximal pay does not change.
Similarly, if our subset is not an interval (contains any ”gaps”), then it is
safe to remove the lowest-earning citizen and add someone from the gap
instead.

maxi Ai ≤ K ·
∑
i

Ai/m

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 24 / 70

Problem M Social Justice

Sort the citizens by salaries.

Observation

If there exists a socially just subset of size m, then:

there exists a socially just subset of size m which is an interval,

there exist such subsets for every m′ < m.

Proof: Removing the lowest-earning citizen is always safe: the average pay
increases (or stays the same), while the maximal pay does not change.
Similarly, if our subset is not an interval (contains any ”gaps”), then it is
safe to remove the lowest-earning citizen and add someone from the gap
instead.

maxi Ai ≤ K ·
∑
i

Ai/m

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 24 / 70

Problem M Social Justice

Therefore, we are able to find the largest possible size of social justice in
O(n log n). We can use binary search and the fixed-length window moving,
or the variable-length window moving.

Observation

Let us fix a citizen c. If there exists a socially just subset of size m
containing c , then there exists such a subset of the form J ∪ c , where J is
an interval of elements larger than c .

Proof: Analogously as in the previous step (replace the lowest-earning
citizen with someone from the ”gap”, but do not touch c).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 25 / 70

Problem M Social Justice

Therefore, we are able to find the largest possible size of social justice in
O(n log n). We can use binary search and the fixed-length window moving,
or the variable-length window moving.

Observation

Let us fix a citizen c. If there exists a socially just subset of size m
containing c , then there exists such a subset of the form J ∪ c , where J is
an interval of elements larger than c .

Proof: Analogously as in the previous step (replace the lowest-earning
citizen with someone from the ”gap”, but do not touch c).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 25 / 70

Problem M Social Justice

Observation

Let us fix an interval J. We will try to find all citizens with salaries
smaller or equal than the salaries in J, who could possibly be added to
this interval. Then the inequality

maxi Ai ≤ K ·
∑

i Ai

m

simplifies into a linear inequality:

maxJ ≤ K ·
∑

J + Ac

m

m ·maxJ − K ·
∑

J ≤ K · Ac

where Ac is the variable, and all other terms are constants (as long as a
particular J is fixed).

So, for a given interval J of length m − 1, we can simply binary search the
last index of the citizen that can be added to J and the set remains just.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 26 / 70

Problem M Social Justice

Observation

Let us fix an interval J. We will try to find all citizens with salaries
smaller or equal than the salaries in J, who could possibly be added to
this interval. Then the inequality

maxi Ai ≤ K ·
∑

i Ai

m

simplifies into a linear inequality:

maxJ ≤ K ·
∑

J + Ac

m

m ·maxJ − K ·
∑

J ≤ K · Ac

where Ac is the variable, and all other terms are constants (as long as a
particular J is fixed).

So, for a given interval J of length m − 1, we can simply binary search the
last index of the citizen that can be added to J and the set remains just.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 26 / 70

Problem M Social Justice

Wrap-up:

We find m: the largest size of a socially just subset.

On the array of sorted salaries, we move a window (J) of length
m − 1.

At each position, we binary search the smallest element c which could
be added to J to obtain a socially just set. If any such element is
found (i,e. if it’s not inside J nor is larger than the elements of J), we
mark J, c and everything in between as an interval of citizens who
have a chance to stay in the town.

Then we compute the sum of those intervals. Any citizen not covered
by the intervals is someone who must be banished.

Complexity: O(nlogn).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 27 / 70

Problem E Archer Vlad

Problem E
Archer Vlad

Author: Daniel Goc

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 28 / 70

Problem E Archer Vlad

Statement

We are given constant C and a sequence (xi , yi) of n pairs of positive
integers. Find an angle α such that a projectile shot from point (0, 0) at
this angle with initial velocity C will fly above all the points (xi , yi).
Output a possible value of tan(α).

Solution

Firstly, let us consider the case n = 1. We start with a lemma:

Lemma

For n = 1 the set of possible values for tan(α) is the interval(
C 2 −

√
∆

g · x1
,
C 2 +

√
∆

g · x1

)

where ∆ = C 4 − g2x2
1 − 2gC 2y1.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 29 / 70

Problem E Archer Vlad

Statement

We are given constant C and a sequence (xi , yi) of n pairs of positive
integers. Find an angle α such that a projectile shot from point (0, 0) at
this angle with initial velocity C will fly above all the points (xi , yi).
Output a possible value of tan(α).

Solution

Firstly, let us consider the case n = 1. We start with a lemma:

Lemma

For n = 1 the set of possible values for tan(α) is the interval(
C 2 −

√
∆

g · x1
,
C 2 +

√
∆

g · x1

)

where ∆ = C 4 − g2x2
1 − 2gC 2y1.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 29 / 70

Problem E Archer Vlad

Statement

We are given constant C and a sequence (xi , yi) of n pairs of positive
integers. Find an angle α such that a projectile shot from point (0, 0) at
this angle with initial velocity C will fly above all the points (xi , yi).
Output a possible value of tan(α).

Solution

Firstly, let us consider the case n = 1. We start with a lemma:

Lemma

For n = 1 the set of possible values for tan(α) is the interval(
C 2 −

√
∆

g · x1
,
C 2 +

√
∆

g · x1

)

where ∆ = C 4 − g2x2
1 − 2gC 2y1.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 29 / 70

Problem E Archer Vlad

Proof

Suppose we shot a projectile at an angle α giving it an initial
horizontal velocity of C · cos(α) and initial vertical velocity of
C · sin(α). When the x-coordinate of projectile reaches x1 then its
y -coordinate (denoted by yp) becomes:

yp = x1 · tan(α)− g

2

(
x1

C · cos(α)

)2

Writing cos(α) in terms of tan(α) we transform the inequality
yp > y1 into:

gx2
1 tan

2(α)− 2C 2x1tan(α) + gx2
1 + 2C 2y1 < 0

The rest is solving quadratic inequality.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 30 / 70

Problem E Archer Vlad

Solution

So for n = 1 we can find all the possible values of tan(α) in O(1) time.

But now notice that for n > 1 we can divide the problem into many n = 1
problems, and then take the intersection of all the solutions.

This gives us the following algorithm:

Algorithm

For each point (xi , yi) calculate the interval of possible values for
tan(α).

Find the intersection of all these intervals, which will again be an
interval.

Output any element from the resulting interval.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 31 / 70

Problem E Archer Vlad

Solution

So for n = 1 we can find all the possible values of tan(α) in O(1) time.

But now notice that for n > 1 we can divide the problem into many n = 1
problems, and then take the intersection of all the solutions.

This gives us the following algorithm:

Algorithm

For each point (xi , yi) calculate the interval of possible values for
tan(α).

Find the intersection of all these intervals, which will again be an
interval.

Output any element from the resulting interval.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 31 / 70

Problem E Archer Vlad

Solution

So for n = 1 we can find all the possible values of tan(α) in O(1) time.

But now notice that for n > 1 we can divide the problem into many n = 1
problems, and then take the intersection of all the solutions.

This gives us the following algorithm:

Algorithm

For each point (xi , yi) calculate the interval of possible values for
tan(α).

Find the intersection of all these intervals, which will again be an
interval.

Output any element from the resulting interval.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 31 / 70

Problem B (Almost) Fair Cake-Cutting

Problem B
(Almost) Fair Cake-Cutting

Author: Wiktor Kuropatwa

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 32 / 70

Problem B (Almost) Fair Cake-Cutting

Statement

Given a square-shaped cake and n lines (cuts), each dividing the square
into two non-zero-area parts. For each cut, Alice can choose one of the
sides (a half-plane) and eat all the cake at this side. Determine the largest
area of the cake which can be covered with an optimal choice of the
half-planes.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 33 / 70

Problem B (Almost) Fair Cake-Cutting

There are 2n possible choices of the half-planes.

However, we can see that the lines divide the plane (and the square) into
(at most) T (n + 1) = T (n) + n + 1 pieces.
T (n) = O(n2).

So, for a large enough n (it’s easy to check that this is satisfied for n ≥ 3
actually), there must always exist at least one choice of half-planes such
that their intersection is empty. Alice can choose her solution by taking the
opposite half-plane in each of the equations - this way, the aforementioned
empty intersection is precisely what will be left for Bob to eat. Alice is
therefore able to cover the whole plane and the answer is always 100%.

What remains to be done is to handle the cases of n = 2 and n = 1.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 34 / 70

Problem B (Almost) Fair Cake-Cutting

There are 2n possible choices of the half-planes.

However, we can see that the lines divide the plane (and the square) into
(at most) T (n + 1) = T (n) + n + 1 pieces.
T (n) = O(n2).

So, for a large enough n (it’s easy to check that this is satisfied for n ≥ 3
actually), there must always exist at least one choice of half-planes such
that their intersection is empty. Alice can choose her solution by taking the
opposite half-plane in each of the equations - this way, the aforementioned
empty intersection is precisely what will be left for Bob to eat. Alice is
therefore able to cover the whole plane and the answer is always 100%.

What remains to be done is to handle the cases of n = 2 and n = 1.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 34 / 70

Problem B (Almost) Fair Cake-Cutting

There are 2n possible choices of the half-planes.

However, we can see that the lines divide the plane (and the square) into
(at most) T (n + 1) = T (n) + n + 1 pieces.
T (n) = O(n2).

So, for a large enough n (it’s easy to check that this is satisfied for n ≥ 3
actually), there must always exist at least one choice of half-planes such
that their intersection is empty. Alice can choose her solution by taking the
opposite half-plane in each of the equations - this way, the aforementioned
empty intersection is precisely what will be left for Bob to eat. Alice is
therefore able to cover the whole plane and the answer is always 100%.

What remains to be done is to handle the cases of n = 2 and n = 1.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 34 / 70

Problem B (Almost) Fair Cake-Cutting

For n = 2:

If the lines intersect outside of the square, the answer is also 100%.

Including if they are parallel (maybe equal).

Otherwise, the lines divide the square into 4 pieces, of which we need
to find the one with the smallest area and give it to Bob.

For n = 1, we need to find the smaller of the two pieces and give it to
Bob, which with a little bit of care we can do using the same code we
already needed to implement for n = 2.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 35 / 70

Problem B (Almost) Fair Cake-Cutting

For n = 2:

If the lines intersect outside of the square, the answer is also 100%.
Including if they are parallel

(maybe equal).

Otherwise, the lines divide the square into 4 pieces, of which we need
to find the one with the smallest area and give it to Bob.

For n = 1, we need to find the smaller of the two pieces and give it to
Bob, which with a little bit of care we can do using the same code we
already needed to implement for n = 2.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 35 / 70

Problem B (Almost) Fair Cake-Cutting

For n = 2:

If the lines intersect outside of the square, the answer is also 100%.
Including if they are parallel (maybe equal).

Otherwise, the lines divide the square into 4 pieces, of which we need
to find the one with the smallest area and give it to Bob.

For n = 1, we need to find the smaller of the two pieces and give it to
Bob, which with a little bit of care we can do using the same code we
already needed to implement for n = 2.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 35 / 70

Problem B (Almost) Fair Cake-Cutting

For n = 2:

If the lines intersect outside of the square, the answer is also 100%.
Including if they are parallel (maybe equal).

Otherwise, the lines divide the square into 4 pieces, of which we need
to find the one with the smallest area and give it to Bob.

For n = 1, we need to find the smaller of the two pieces and give it to
Bob, which with a little bit of care we can do using the same code we
already needed to implement for n = 2.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 35 / 70

Problem B (Almost) Fair Cake-Cutting

For n = 2:

If the lines intersect outside of the square, the answer is also 100%.
Including if they are parallel (maybe equal).

Otherwise, the lines divide the square into 4 pieces, of which we need
to find the one with the smallest area and give it to Bob.

For n = 1, we need to find the smaller of the two pieces and give it to
Bob, which with a little bit of care we can do using the same code we
already needed to implement for n = 2.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 35 / 70

Problem D Flat Organization

Problem D
Flat Organization

Author: Krzysztof Kleiner

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 36 / 70

Problem D Flat Organization

Statement

Given a tournament (a full directed graph) with positive weights, we want
to reverse some of the edges to obtain a strongly connected graph (i.e.
one where any vertex is reachable from any other). Find a solution which
minimizes the sum of weights of reversed edges.

Solution 1

Compute the graph of strongly connected components (SCCs).

Create bidirectional edges between SCCs, with weight 0 in one
direction and a positive weight in the opposite direction.

Run Dijkstra from the bottom SCC to the top SCC.

Reverse all the edges with positive weights on the shortest path
found by Dijkstra.

Complexity: O(n2logn)
And don’t forget about n = 2.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 37 / 70

Problem D Flat Organization

Statement

Given a tournament (a full directed graph) with positive weights, we want
to reverse some of the edges to obtain a strongly connected graph (i.e.
one where any vertex is reachable from any other). Find a solution which
minimizes the sum of weights of reversed edges.

Solution 1

Compute the graph of strongly connected components (SCCs).

Create bidirectional edges between SCCs, with weight 0 in one
direction and a positive weight in the opposite direction.

Run Dijkstra from the bottom SCC to the top SCC.

Reverse all the edges with positive weights on the shortest path
found by Dijkstra.

Complexity: O(n2logn)

And don’t forget about n = 2.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 37 / 70

Problem D Flat Organization

Statement

Given a tournament (a full directed graph) with positive weights, we want
to reverse some of the edges to obtain a strongly connected graph (i.e.
one where any vertex is reachable from any other). Find a solution which
minimizes the sum of weights of reversed edges.

Solution 1

Compute the graph of strongly connected components (SCCs).

Create bidirectional edges between SCCs, with weight 0 in one
direction and a positive weight in the opposite direction.

Run Dijkstra from the bottom SCC to the top SCC.

Reverse all the edges with positive weights on the shortest path
found by Dijkstra.

Complexity: O(n2logn)
And don’t forget about n = 2.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 37 / 70

Problem D Flat Organization

Statement

Given a tournament (a full directed graph) with positive weights, we want
to reverse some of the edges to obtain a strongly connected graph (i.e.
one where any vertex is reachable from any other). Find a solution which
minimizes the sum of weights of reversed edges.

Solution 2

Do not compute the graph of SCCs, just find any vertex in the
bottom SCC. For example, the first vertex in the DFS postorder or
the vertex with the highest in-degree.

(This is true only because the graph is a tournament!)

Analogously, find any vertex in the top SCC.

Then follow solution 1 on the original graph rather than on the SCC
graph.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 38 / 70

Problem D Flat Organization

Statement

Given a tournament (a full directed graph) with positive weights, we want
to reverse some of the edges to obtain a strongly connected graph (i.e.
one where any vertex is reachable from any other). Find a solution which
minimizes the sum of weights of reversed edges.

Solution 2

Do not compute the graph of SCCs, just find any vertex in the
bottom SCC. For example, the first vertex in the DFS postorder or
the vertex with the highest in-degree.
(This is true only because the graph is a tournament!)

Analogously, find any vertex in the top SCC.

Then follow solution 1 on the original graph rather than on the SCC
graph.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 38 / 70

Problem D Flat Organization

Statement

Given a tournament (a full directed graph) with positive weights, we want
to reverse some of the edges to obtain a strongly connected graph (i.e.
one where any vertex is reachable from any other). Find a solution which
minimizes the sum of weights of reversed edges.

Solution 2

Do not compute the graph of SCCs, just find any vertex in the
bottom SCC. For example, the first vertex in the DFS postorder or
the vertex with the highest in-degree.
(This is true only because the graph is a tournament!)

Analogously, find any vertex in the top SCC.

Then follow solution 1 on the original graph rather than on the SCC
graph.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 38 / 70

Problem D Flat Organization

Solution 3

Compute the graph of SCCs and observe that it must be a path.

Use dynamic programming to find the shortest route from the bottom
to the top of the path.

When performing the relaxation step for some edge (v , u) in the SCC
graph, we need to use the formula:

dist[u] = weight[v , u] + minimumDist(u + 1, . . . , v),

rather than
dist[u] = weight[v , u] + dist[v],

because the shortest route might go through some edges that do not
require reversing. We can compute it using a simple segment tree
(O(n2logn)), or by choosing an order of relaxations which permits
recomputing the prefix minimums on the fly (O(n2)).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 39 / 70

Problem D Flat Organization

Solution 3

Compute the graph of SCCs and observe that it must be a path.

Use dynamic programming to find the shortest route from the bottom
to the top of the path.

When performing the relaxation step for some edge (v , u) in the SCC
graph, we need to use the formula:

dist[u] = weight[v , u] + minimumDist(u + 1, . . . , v),

rather than
dist[u] = weight[v , u] + dist[v],

because the shortest route might go through some edges that do not
require reversing. We can compute it using a simple segment tree
(O(n2logn)), or by choosing an order of relaxations which permits
recomputing the prefix minimums on the fly (O(n2)).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 39 / 70

Problem J Civilizations

Problem J
Civilizations

Author: Krzysztof Maziarz

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 40 / 70

Problem J Civilizations

Problem

We’re given an n x n field divided into n2 unit squares; each square has an
owner civilization and a value. For civilization p, we define its length of
borders lp and sum-of-values wp. There are q events where a unit square
changes owners, after each event determine the maximum value of
A · wp + B · lp + C · wp · lp (A, B, C are different for each query).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 41 / 70

Problem J Civilizations

We can think of civilizations as points (lp,wp). Every change of owner for
a single unit square impacts the values for the old owner, new owner, and
owners of adjacent squares. In total, O(1) points change.

If not for the C · wp · lp part, we could think of the convex hull of our set
of points. But handling the full scoring function for arbitrary points and
updates seems tricky...

Is there anything special about the set of points (lp,wp)?

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 42 / 70

Problem J Civilizations

We can think of civilizations as points (lp,wp). Every change of owner for
a single unit square impacts the values for the old owner, new owner, and
owners of adjacent squares. In total, O(1) points change.

If not for the C · wp · lp part, we could think of the convex hull of our set
of points. But handling the full scoring function for arbitrary points and
updates seems tricky...

Is there anything special about the set of points (lp,wp)?

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 42 / 70

Problem J Civilizations

We can think of civilizations as points (lp,wp). Every change of owner for
a single unit square impacts the values for the old owner, new owner, and
owners of adjacent squares. In total, O(1) points change.

If not for the C · wp · lp part, we could think of the convex hull of our set
of points. But handling the full scoring function for arbitrary points and
updates seems tricky...

Is there anything special about the set of points (lp,wp)?

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 42 / 70

Problem J Civilizations

The range of values for lp and wp are large, that’s not going to help. But...

Observation

The sum of values of lp is O(n2).

Fact

If x1 + · · ·+ xk = m, then there are only O(
√
m) distinct values xi .

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 43 / 70

Problem J Civilizations

The range of values for lp and wp are large, that’s not going to help. But...

Observation

The sum of values of lp is O(n2).

Fact

If x1 + · · ·+ xk = m, then there are only O(
√
m) distinct values xi .

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 43 / 70

Problem J Civilizations

The range of values for lp and wp are large, that’s not going to help. But...

Observation

The sum of values of lp is O(n2).

Fact

If x1 + · · ·+ xk = m, then there are only O(
√
m) distinct values xi .

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 43 / 70

Problem J Civilizations

So, we get a crucial observation: while there may be O(n2) civilizations,
there will only be O(n) different values of lp at any given time.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 44 / 70

Problem J Civilizations

We can rewrite our scoring as

A · wp + B · lp + C · wp · lp = B · lp + (A + C · lp) · wp

If lp is fixed, it’s optimal to choose either the largest or smallest wp

(depending on the sign of A + C · lp).

Lets store all civilizations grouped by lp; within a single group sorted by wp.

To answer a query, we iterate through all groups of civilizations and check
either the minimum or maximum element.

Complexity: O(n2 + q · n).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 45 / 70

Problem J Civilizations

We can rewrite our scoring as

A · wp + B · lp + C · wp · lp = B · lp + (A + C · lp) · wp

If lp is fixed, it’s optimal to choose either the largest or smallest wp

(depending on the sign of A + C · lp).

Lets store all civilizations grouped by lp; within a single group sorted by wp.

To answer a query, we iterate through all groups of civilizations and check
either the minimum or maximum element.

Complexity: O(n2 + q · n).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 45 / 70

Problem J Civilizations

We can rewrite our scoring as

A · wp + B · lp + C · wp · lp = B · lp + (A + C · lp) · wp

If lp is fixed, it’s optimal to choose either the largest or smallest wp

(depending on the sign of A + C · lp).

Lets store all civilizations grouped by lp; within a single group sorted by wp.

To answer a query, we iterate through all groups of civilizations and check
either the minimum or maximum element.

Complexity: O(n2 + q · n).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 45 / 70

Problem J Civilizations

We can rewrite our scoring as

A · wp + B · lp + C · wp · lp = B · lp + (A + C · lp) · wp

If lp is fixed, it’s optimal to choose either the largest or smallest wp

(depending on the sign of A + C · lp).

Lets store all civilizations grouped by lp; within a single group sorted by wp.

To answer a query, we iterate through all groups of civilizations and check
either the minimum or maximum element.

Complexity: O(n2 + q · n).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 45 / 70

Problem A Edit Distance Yet Again

Problem A
Edit Distance Yet Again

Author: Adam Polak

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 46 / 70

Problem A Edit Distance Yet Again

Statement

Given two strings S = s1 . . . sn, T = t1 . . . tm and number k
(n,m ≤ 1 000 000, k ≤ 1000), compute the edit distance between the strings
or report that it’s larger than k .

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 47 / 70

Problem A Edit Distance Yet Again

We can present any solution as a matching between S and T – we match
si and tj if si is going to be changed into tj . We match tj with the position
si/si+1 if tj needs to be inserted between si/si+1, and similarly for deletion.

S: a b c a b a c

T: a b b a a c c

A matching of size r corresponds to the edit distance r between S and T .
If we determine the best matching, we can easily retrieve the required
sequence of operations.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 48 / 70

Problem A Edit Distance Yet Again

We can present any solution as a matching between S and T – we match
si and tj if si is going to be changed into tj . We match tj with the position
si/si+1 if tj needs to be inserted between si/si+1, and similarly for deletion.

S: a b c a b a c

T: a b b a a c c

A matching of size r corresponds to the edit distance r between S and T .
If we determine the best matching, we can easily retrieve the required
sequence of operations.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 48 / 70

Problem A Edit Distance Yet Again

Observation 1

After each operation, we can pair the following identical symbols of S and
T greedily, for as long as possible.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 49 / 70

Problem A Edit Distance Yet Again

Observation 1

After each operation, we can pair the following identical symbols of S and
T greedily, for as long as possible.

S: a b c

T: a b b

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 49 / 70

Problem A Edit Distance Yet Again

Observation 1

After each operation, we can pair the following identical symbols of S and
T greedily, for as long as possible.

S: a b c a

T: a b b a

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 49 / 70

Problem A Edit Distance Yet Again

Observation 1

After each operation, we can pair the following identical symbols of S and
T greedily, for as long as possible.

S: a b c a b

T: a b b a b

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 49 / 70

Problem A Edit Distance Yet Again

Observation 1

After each operation, we can pair the following identical symbols of S and
T greedily, for as long as possible.

S: a b c a b c

T: a b b a b c

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 49 / 70

Problem A Edit Distance Yet Again

Observation 1

After each operation, we can pair the following identical symbols of S and
T greedily, for as long as possible.

S: a b c a b c

T: a b b a b c

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 49 / 70

Problem A Edit Distance Yet Again

Observation 1

After each operation, we can pair the following identical symbols of S and
T greedily, for as long as possible.

S: a b c a b c b

T: a b b a b c

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 49 / 70

Problem A Edit Distance Yet Again

Let us rephrase our question: imagine that we perform a sequence of
alternating operations:

Greedily pair letters of S and T one-to-one.

Perform a single edit: either add a letter to T (INSERT), a letter to
S (DELETE) or a letter to both sequences (REPLACE), at a cost 1.

We must reach (n,m) – the end of both sequences – with minimal cost
(not exceeding k). So let us denote by Ar the set of pairs that we can
reach with cost exactly r .

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 50 / 70

Problem A Edit Distance Yet Again

First, it is obvious that we never reach any pair (i , j) with |i − j | > k . But
there’s more:

Observation 2

If there are two pairs (i , i + d), (i ′, i ′ + d) ∈ Ar and i > i ′, then we may
forget (i ′, i ′ + d), as the optimal solution does not need it.

S: x x x x x x x

T: x x x x x x x

This is true because in every solution we can replace steps leading to
(i ′, i ′ + d) with ”better” steps leading to (i , i + d), and then proceed as
we did before.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 51 / 70

Problem A Edit Distance Yet Again

Solution idea: compute all the ”important” pairs in Ar . We perform a
move Ar → Ar+1 the following way:

1 For any pair (i , j) ∈ Ar , we add (i + 1, j), (i , j + 1) and (i + 1, j + 1)
to Ar+1.

2 For every pair (i ′, j ′) ∈ Ar+1 we prolong the sequences, for as long as
we can – to the largest possible (i ′ + q, j ′ + q) such that
S [i ′..i ′ + q] = T [j ′..j ′ + q].

3 Remove all unnecessary pairs from Ar+1 – this is done by simple
sorting.
(At most 2k + 1 pairs will be left, as i − j ∈ {−k ,−k + 1, . . . , k}.)

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 52 / 70

Problem A Edit Distance Yet Again

For step 2 (greedy pairing), we need Longest Common Prefix of S
and T . We can do that using suffix array or hashes. . .

. . . aaand we were somewhat nasty – suffix array with KMR is too
slow AND the hashes modulo 264 get Wrong Answer. So you need
Karkkainen-Sanders. . .

. . . just kidding, you can use hashes modulo two primes. (Probably,
you could squeeze KMR/suffix tree/DBF, too).

Total complexity is O(n + k2 log n).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 53 / 70

Problem A Edit Distance Yet Again

For step 2 (greedy pairing), we need Longest Common Prefix of S
and T . We can do that using suffix array or hashes. . .

. . . aaand we were somewhat nasty – suffix array with KMR is too
slow AND the hashes modulo 264 get Wrong Answer. So you need
Karkkainen-Sanders. . .

. . . just kidding, you can use hashes modulo two primes. (Probably,
you could squeeze KMR/suffix tree/DBF, too).

Total complexity is O(n + k2 log n).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 53 / 70

Problem A Edit Distance Yet Again

For step 2 (greedy pairing), we need Longest Common Prefix of S
and T . We can do that using suffix array or hashes. . .

. . . aaand we were somewhat nasty – suffix array with KMR is too
slow AND the hashes modulo 264 get Wrong Answer. So you need
Karkkainen-Sanders. . .

. . . just kidding, you can use hashes modulo two primes. (Probably,
you could squeeze KMR/suffix tree/DBF, too).

Total complexity is O(n + k2 log n).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 53 / 70

Problem A Edit Distance Yet Again

For step 2 (greedy pairing), we need Longest Common Prefix of S
and T . We can do that using suffix array or hashes. . .

. . . aaand we were somewhat nasty – suffix array with KMR is too
slow AND the hashes modulo 264 get Wrong Answer. So you need
Karkkainen-Sanders. . .

. . . just kidding, you can use hashes modulo two primes. (Probably,
you could squeeze KMR/suffix tree/DBF, too).

Total complexity is O(n + k2 log n).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 53 / 70

Problem A Edit Distance Yet Again

However, keeping Ar as the set of pairs also tends to be very slow – it is
better to frame it as dynamic programming algorithm:

best[r][d] – the largest i such that (i , i + d) is in Ar , for r = 1, 2, . . . k and
d = −k ,−k + 1, . . . , k − 1, k .

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 54 / 70

Problem H Social Distancing

Problem H
Social Distancing

Author: Marcin Briański

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 55 / 70

Problem H Social Distancing

Statement

We are given a tree with n nodes and two independenta subsets of its
vertices S1 and S2. In one move, we can change a single element of the
first set into another vertex connected by an edge. Transform S1 into S2

by a sequence of O(n2) moves such that all intermediate sets are also
independent.

aSubset is independent if doesn’t contain two vertices connected by an edge

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 56 / 70

Problem H Social Distancing

Let’s transform both S1 and S2 to some canonical form. If these forms are
different, then the answer is NO; otherwise the answer is YES and we can
obtain the solution by concatenating the sequence that canonicalizes S1

with the one that canonicalized S2 in reverse.

How to define the canonical form of S?

Intuition: lets root the tree, and construct the canonical form of S by
pushing all elements of S as low as possible.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 57 / 70

Problem H Social Distancing

Let’s transform both S1 and S2 to some canonical form. If these forms are
different, then the answer is NO; otherwise the answer is YES and we can
obtain the solution by concatenating the sequence that canonicalizes S1

with the one that canonicalized S2 in reverse.

How to define the canonical form of S?

Intuition: lets root the tree, and construct the canonical form of S by
pushing all elements of S as low as possible.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 57 / 70

Problem H Social Distancing

Let’s transform both S1 and S2 to some canonical form. If these forms are
different, then the answer is NO; otherwise the answer is YES and we can
obtain the solution by concatenating the sequence that canonicalizes S1

with the one that canonicalized S2 in reverse.

How to define the canonical form of S?

Intuition: lets root the tree, and construct the canonical form of S by
pushing all elements of S as low as possible.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 57 / 70

Problem H Social Distancing

Formally: number vertices by decreasing distance from the root, breaking
ties arbitrarily. We will construct the lexicographically smallest S ′ which is
reachable from S .

We go through the vertices in our new order; when we see a vertex v /∈ S ,
we try to modify S to include v , but making sure we don’t break the
previously ”fixed” vertices which we consider frozen.

We run dfs from v to find a vertex in S that we could pull into v . Often
we can pull the closest vertex u ∈ S , unless the next node on the u − v
path (lets call it x) has two children in S . In that case, u would like to
move to x but the other child blocks it.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 58 / 70

Problem H Social Distancing

Formally: number vertices by decreasing distance from the root, breaking
ties arbitrarily. We will construct the lexicographically smallest S ′ which is
reachable from S .

We go through the vertices in our new order; when we see a vertex v /∈ S ,
we try to modify S to include v , but making sure we don’t break the
previously ”fixed” vertices which we consider frozen.

We run dfs from v to find a vertex in S that we could pull into v . Often
we can pull the closest vertex u ∈ S , unless the next node on the u − v
path (lets call it x) has two children in S . In that case, u would like to
move to x but the other child blocks it.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 58 / 70

Problem H Social Distancing

Formally: number vertices by decreasing distance from the root, breaking
ties arbitrarily. We will construct the lexicographically smallest S ′ which is
reachable from S .

We go through the vertices in our new order; when we see a vertex v /∈ S ,
we try to modify S to include v , but making sure we don’t break the
previously ”fixed” vertices which we consider frozen.

We run dfs from v to find a vertex in S that we could pull into v . Often
we can pull the closest vertex u ∈ S , unless the next node on the u − v
path (lets call it x) has two children in S . In that case, u would like to
move to x but the other child blocks it.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 58 / 70

Problem H Social Distancing

Therefore we need one more subroutine: pushing nodes away from v , to
get rid of any blocking nodes (if possible). We do dfs from v , when we
exit a node u ∈ S we see if we could move u to one of its children; if so we
choose arbitrarily and move it. This ensures that every u ∈ S moves one
step away from v (as long as its possible).

After such a push, if all u ∈ S that we could pull into v are blocked by
their sibling, its not possible to include v into S . Otherwise we pull in any
u and continue.

In both push-dfs and pull-dfs, we never go into the frozen (previously
considered) vertices. This is okay, because the frozen vertices are ”at the
bottom” of the tree, i.e. we never have to go through a frozen vertex to
reach a non-frozen vertex.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 59 / 70

Problem H Social Distancing

Therefore we need one more subroutine: pushing nodes away from v , to
get rid of any blocking nodes (if possible). We do dfs from v , when we
exit a node u ∈ S we see if we could move u to one of its children; if so we
choose arbitrarily and move it. This ensures that every u ∈ S moves one
step away from v (as long as its possible).

After such a push, if all u ∈ S that we could pull into v are blocked by
their sibling, its not possible to include v into S . Otherwise we pull in any
u and continue.

In both push-dfs and pull-dfs, we never go into the frozen (previously
considered) vertices. This is okay, because the frozen vertices are ”at the
bottom” of the tree, i.e. we never have to go through a frozen vertex to
reach a non-frozen vertex.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 59 / 70

Problem H Social Distancing

Therefore we need one more subroutine: pushing nodes away from v , to
get rid of any blocking nodes (if possible). We do dfs from v , when we
exit a node u ∈ S we see if we could move u to one of its children; if so we
choose arbitrarily and move it. This ensures that every u ∈ S moves one
step away from v (as long as its possible).

After such a push, if all u ∈ S that we could pull into v are blocked by
their sibling, its not possible to include v into S . Otherwise we pull in any
u and continue.

In both push-dfs and pull-dfs, we never go into the frozen (previously
considered) vertices. This is okay, because the frozen vertices are ”at the
bottom” of the tree, i.e. we never have to go through a frozen vertex to
reach a non-frozen vertex.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 59 / 70

Problem H Social Distancing

To sum up, we consider all n nodes in a loop, for each we do a push-dfs
followed by a pull-dfs, both can perform O(n) moves.

We get a solution with O(n2) time complexity and the same number of
moves.

With a clear picture of what should be done, this problem is actually
surprisingly easy to implement, and the model solution fits under 200 lines.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 60 / 70

Problem H Social Distancing

To sum up, we consider all n nodes in a loop, for each we do a push-dfs
followed by a pull-dfs, both can perform O(n) moves.

We get a solution with O(n2) time complexity and the same number of
moves.

With a clear picture of what should be done, this problem is actually
surprisingly easy to implement, and the model solution fits under 200 lines.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 60 / 70

Problem H Social Distancing

To sum up, we consider all n nodes in a loop, for each we do a push-dfs
followed by a pull-dfs, both can perform O(n) moves.

We get a solution with O(n2) time complexity and the same number of
moves.

With a clear picture of what should be done, this problem is actually
surprisingly easy to implement, and the model solution fits under 200 lines.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 60 / 70

Problem L Patrol Drone

Problem L
Patrol Drone

Author: Krzysztof Maziarz

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 61 / 70

Problem L Patrol Drone

Statement

We are given two decks D1 and D2 containing cards with letters {N, E, S,
W}. A deck represents a path in Cartesian plane, and we are given a
starting/ending point (Cx ,Cy) for both decks. In each moment, we only
have access to the 2 top elements of deck D1, which we can swap, remove
(if they show opposite directions) or we can add 2 opposite cards on top.
Lastly, we can put the top card of D1 to the bottom, simultaneously
moving in the direction written on that card. Without ever crossing point
(0, 0), transform deck D1 into deck D2, or determine that it’s impossible.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 62 / 70

Problem L Patrol Drone

Solution

The first idea is to convert both paths in O(n2 + m2) time and at most
n2 + m2 (plus some linear, insignificant stuff) operations into something
simpler. For each path the result of conversion will be a (possibly empty)
path going around point (0, 0), completely contained in 3x3 square
centered at (0, 0), and starting at the point (0, 1).

Since we will conduct both conversions independently, let us narrow our
focus down to just deck D1.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 63 / 70

Problem L Patrol Drone

Solution

The first idea is to convert both paths in O(n2 + m2) time and at most
n2 + m2 (plus some linear, insignificant stuff) operations into something
simpler. For each path the result of conversion will be a (possibly empty)
path going around point (0, 0), completely contained in 3x3 square
centered at (0, 0), and starting at the point (0, 1).

Since we will conduct both conversions independently, let us narrow our
focus down to just deck D1.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 63 / 70

Problem L Patrol Drone

Suppose that the path of D1 is completely contained in some rectangle
(we pick the smallest one) of size (a + 1)× (b + 1). We will now introduce
a simple algorithm that decreases the size of this rectangle.

Algorithm

Suppose that a > 0 and let the greatest y -coordinate of some station on
that path be ymax > 1. To decrease a by 1 do the following:

Start by going to some station with y -coordinate smaller than ymax .

Now make a full cycle of n moves.

Whenever encountering a card pointing to some square with
y -coordinate equal to ymax , use swap. Then move.

Whenever encountering two opposite cards on top, remove them.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 64 / 70

Problem L Patrol Drone

Suppose that the path of D1 is completely contained in some rectangle
(we pick the smallest one) of size (a + 1)× (b + 1). We will now introduce
a simple algorithm that decreases the size of this rectangle.

Algorithm

Suppose that a > 0 and let the greatest y -coordinate of some station on
that path be ymax > 1. To decrease a by 1 do the following:

Start by going to some station with y -coordinate smaller than ymax .

Now make a full cycle of n moves.

Whenever encountering a card pointing to some square with
y -coordinate equal to ymax , use swap. Then move.

Whenever encountering two opposite cards on top, remove them.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 64 / 70

Problem L Patrol Drone

It’s a simple exercise to show that this algorithm reduces the amount of
cards in deck by at least two. Also, repeating it k times works in O(k · n)
time and utilizes at most 2nk + n moves, so approximately n ”moves per
card”. Hence, in the first part of solution we try to reduce a and b to the
minimum by rotating the Cartesian plane and applying the algorithm to
the maximum.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 65 / 70

Problem L Patrol Drone

In the next part we simply walk around the path and remove from the top
any opposing cards we encounter, until there are none we can remove. It
can be shown that this part takes at most nk

2 + n moves, where k is the
amount of cards we have removed. This is about n

2 ”moves per card”.

After proper treatment of 2 cases that arise after executing the step above,
the path will take exactly the form that we described at the beginning:

Structure

(possibly empty) path going around point (0, 0), completely contained in
3x3 square centered at (0, 0), and starting at the point (0, 1).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 66 / 70

Problem L Patrol Drone

In the next part we simply walk around the path and remove from the top
any opposing cards we encounter, until there are none we can remove. It
can be shown that this part takes at most nk

2 + n moves, where k is the
amount of cards we have removed. This is about n

2 ”moves per card”.

After proper treatment of 2 cases that arise after executing the step above,
the path will take exactly the form that we described at the beginning:

Structure

(possibly empty) path going around point (0, 0), completely contained in
3x3 square centered at (0, 0), and starting at the point (0, 1).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 66 / 70

Problem L Patrol Drone

So suppose that we have converted decks D1 and D2 into their simpler
forms E1 and E2 respectively. When is it possible to transform E1 into E2?

The answer is surprisingly simple:

Theorem

We can transform path E1 into E2 if and only if E1 = E2.

Intuitively speaking, it’s because for any path P our operations cannot
change how many times P circles the point (0, 0). More formal proofs of
this theorem lie in the field of topology.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 67 / 70

Problem L Patrol Drone

So suppose that we have converted decks D1 and D2 into their simpler
forms E1 and E2 respectively. When is it possible to transform E1 into E2?

The answer is surprisingly simple:

Theorem

We can transform path E1 into E2 if and only if E1 = E2.

Intuitively speaking, it’s because for any path P our operations cannot
change how many times P circles the point (0, 0). More formal proofs of
this theorem lie in the field of topology.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 67 / 70

Problem L Patrol Drone

So suppose that we have converted decks D1 and D2 into their simpler
forms E1 and E2 respectively. When is it possible to transform E1 into E2?

The answer is surprisingly simple:

Theorem

We can transform path E1 into E2 if and only if E1 = E2.

Intuitively speaking, it’s because for any path P our operations cannot
change how many times P circles the point (0, 0). More formal proofs of
this theorem lie in the field of topology.

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 67 / 70

Problem L Patrol Drone

We can see now see that the only problem left is to merge two sequences
of moves, which we obtained when converting D1 and D2 into their
simpler forms. That we can do by simply reversing (with proper
treatment) the second sequence of moves and concatenating it with the
first one. That concludes the algorithm.

Lastly, we have noted that on average we remove a card every n moves, so
total amount of moves in the final sequence will be bounded above by
n2 + m2 (with some linear stuff).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 68 / 70

Problem L Patrol Drone

We can see now see that the only problem left is to merge two sequences
of moves, which we obtained when converting D1 and D2 into their
simpler forms. That we can do by simply reversing (with proper
treatment) the second sequence of moves and concatenating it with the
first one. That concludes the algorithm.

Lastly, we have noted that on average we remove a card every n moves, so
total amount of moves in the final sequence will be bounded above by
n2 + m2 (with some linear stuff).

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 68 / 70

Problem L Patrol Drone

Problemsetters

Lech Duraj
Daniel Goc

Vladyslav Hlembotskyi
Krzysztof Kleiner
Krzysztof Maziarz
Władysław Raczek

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 69 / 70

Problem L Patrol Drone

Thank you for your attention!

Jagiellonian University in Kraków Petrozavodsk Camp, Day 1: Solutions 29.01.2021 70 / 70

	Problem F
	A Very Different Word

	Problem I
	GCD vs. XOR

	Problem C
	Jellyfish

	Problem G
	Cactus

	Problem K
	We apologize for any inconvenience

	Problem M
	Social Justice

	Problem E
	Archer Vlad

	Problem B
	(Almost) Fair Cake-Cutting

	Problem D
	Flat Organization

	Problem J
	Civilizations

	Problem A
	Edit Distance Yet Again

	Problem H
	Social Distancing

	Problem L
	Patrol Drone

