
40th Petrozavodsk Programming Camp, Winter 2021
Day 8: BSU Contest, Yandex Cup, Sunday, February 7, 2021

Problem Tutorial: “A. Belarusian State University”
Let’s define a convolution in some generalized form similar to FFT or XOR-transform.

We’ll use 0-based indexing below. Denote the set of functions that accept two integer arguments between
0 and k−1 and return an integer between 0 and k−1 as Fk. Let’s call a triple of square matrices (A,B,C)
with dimensions k × k a convolution triple for a function f ∈ Fk if C is nondegenerate and for any two
vectors x and y of size k, the following process:

• Define vectors p = Ax and q = By;

• Define r as component-wise product of p and q (i. e. ri = piqi for 0 ≤ i < k);

• Return z = C−1r.

returns the f -convolution, i. e. zs =
∑

f(i,j)=s

xiyj .

Now we want to find a convolution triple for a given bitwise-independent function such that the convolution
process is fast enough.

How to check whether three matrices form a convolution triple for a certain function f ∈ Fk? The necessary
condition for that is: the convolution should be correct for all vectors with all elements but one being
zeroes. If x has the only nonzero element xi = 1, and y has the only nonzero element yj = 1, then z should
have only one nonzero element zf(i,j) = 1. These conditions are also sufficient because of the linearity of
the convolution.

If A = {aij}, B = {bij}, C = {cij}, the above condition can be rewritten as: C must be nondegenerate,
and for all i, j, s ∈ {0, 1, . . . , k − 1},

asibsj = cs,f(i,j)

should be satisfied.

Now we can try to solve the case n = 1. One of the ways to find the convolution triples for any binary
function is to try all triples of matrices with elements in {−1, 0, 1}. It turns out we can find matrices for
all 16 functions among those possibilities. (Note that we cannot assume A = B = C as we usually do for
several specific convolutions, as for the function f(x, y) = 0 there is no such triple.)

Suppose there are square matrices X = {xij} of size a and Y = {yij} of size b. Let’s denote as a
composition X ◦Y of matrices X and Y a square matrix Z = {zij} of size ab such that zbi+j,bk+l = xikyjl
for 0 ≤ i, k < a, 0 ≤ j, l < b (in other words, it’s just a2 matrices Y put into a matrix X and multiplied
by corresponding coefficients from X).

We can show (by checking the above condition) that if (A1, B1, C1) is a convolution triple for f ∈ Fa, and
(A2, B2, C2) is a convolution triple for g ∈ Fb, then (A1 ◦ A2, B1 ◦B2, C1 ◦ C2) is a convolution triple for
a function h ∈ Fab such that h(bx1 + x2, by1 + y2) = bf(x1, y1) + g(x2, y2). We can also show that C1 ◦C2

is nondegenerate if both C1 and C2 are nondegenerate.

Thus, we only need to obtain the convolution triples (Ai, Bi, Ci) for all given functions fi, and then
(A,B,C) = (An−1 ◦ . . . ◦ A0, Bn−1 ◦ . . . ◦ B0, Cn−1 ◦ . . . ◦ C0) is a convolution triple for the original
function.

The only thing left for the whole solution is fast multiplication by A, B, and C−1. As all of those matrices
are compositions of several 2 × 2 matrices, the process of multiplication of A (or B) by a vector v can
be done in the same manner as for FFT, with the following difference: when we change indices v [i] and
v
[
i+ 2k

]
, we should apply the matrix Ak to them instead of butterfly transform, i. e.(

vnew [i]
vnew

[
i+ 2k

]) = Ak ·
(

vold [i]
vold

[
i+ 2k

]) .

While multiplying C−1 by a vector, we can just reverse the process similar to above.
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The total complexity is O (2n · n).
One could also solve the problem using only convolutions for XOR and AND/OR, as other binary functions
can be either handled separately or reduced to those three using negations. There also exist O (3n) solutions
which are not intended to pass.

Problem Tutorial: “B. Beautiful Sequence Unraveling”
Let dp[x][y] be the number of beautiful sequences of x elements consisting of integers between 1 and y.

Let’s calculate the number of all beautiful sequences (which is obviously equal to yx) and subtract all
sequences which are not beautiful. To calculate the total number of bad sequences, we calculate the
number of bad sequences for which the largest i such that max{a1, . . . , ai} = min{ai+1, . . . an} is equal
to t and min{ai+1, . . . an} is equal to m.

Note that it means that basically sequences to the left and to the right of t are independent as au ≥ av
for all u ≥ t + 1, t ≥ v. But since t is the largest position with this property, the sequence to the right
should also be beautiful.

That’s why the answer to this subproblem is equal to (dp[x−t][y−m+1]−dp[x−t][y−m])·(mt−(m−1)t).
Here we subtract some numbers because we also have max{a1, . . . , ai} = min{ai+1, . . . an} = m.

So, we can already calculate dp in O(n4) for all 1 ≤ x, y ≤ n. To optimize it, we can notice that, for
example:

dp[x− t][y −m+ 1] ·mt = mx ·
(
dp[x− t][y −m+ 1]

mx−t

)
,

so after fixing m, y, we can calculate all transitions for x, t in O(n) time by maintaining the sum of values
dp[i][y−m+1]

mi for the prefix. The same is true for all other summands, so now we can calculate the dp table
in O(n3).

To solve the initial problem, we should calculate f [i] which is the number of beautiful sequences of
length n with exactly i different numbers. We can easily calculate it using dp[n][i] and previous values
f [1], . . . , f [i− 1]. To calculate the final answer, we just iterate over the number of distinct values t in the
beautiful sequence and multiply f [t] by some binomial coefficient.

Some n3 · log FFT and n2 · log2 solutions using FFT and D&C are also possible, but we think they are
not supposed to pass.

Problem Tutorial: “C. Brave Seekers of Unicorns”
Let dp[i] be the number of unicorn sequences with the last element equal to i.

Consider the element x of the sequence before i (if it exists). We should add dp[x] to dp[i], but it can
happen that the sequence will become “bad” after adding i. This happens only if the element before x
was equal to x⊕ i. So, we should subtract dp[x⊕ i] if (x⊕ i) < x.

Now, we should probably add something again as we usually do in the inclusion-exclusion principle. This
is the number of unicorn sequences ending with x⊕ i which became “bad” after adding x. But it is easy
to see that the number of such sequences is equal to zero because a unicorn sequence should be strictly
increasing and (x⊕ i)⊕ x = i > x⊕ i.

In conclusion, we just need to calculate the sum of dp[y] for all y such that y < (y ⊕ i) < i. To do this,
we can maintain prefix sums of dp array and try all positions of the leading bit of y.

The total complexity is O(n log n).

Problem Tutorial: “D. Bank Security Unification”
Let dpi be the maximum possible security of the network over all subsequences ending at the element i.
This dp can be computed in O(n2) by iterating over all possible previous elements of a subsequence. Now,
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we will reduce the number of possible states to make transitions from.

Denote H(x) as the highest power of two that is less than or equal to x. The key observation here is
that if subsequence fj1 , fj2 , . . . , fjk , fi is optimal for some i, then there is no j′ (jk < j′ < i) such that
H(fjk&fi) = H(fj′&fi) (since we can add this element to the subsequence which will lead to greater
security of the network). It means that we can only consider positions of the last occurrence of each bit
in fj as a state to make a transition from. Therefore, we can maintain the array last, where lastp denotes
the position of the rightmost occurrence of the p-th bit among all numbers fj considered earlier, and we
will make transitions to the state dpi only from states dplastp for all p.

For each i, we have O(logC) states to make transitions from, so the overall complexity is O(n logC).

Problem Tutorial: “E. Brief Statements Union”
We will solve the problem for each bit independently, so we can suppose that for all conditions, x is equal
either to 0 or to 1.

We have conditions of the two types for some segments:

1. a segment contains only 1’s (the first type);

2. there is at least one 0 on a segment (the second type).

We will call a condition good if, after its removal, we can find at least one array which satisfies all other
conditions. We can easily find all conditions of the second type which are not satisfied initially. If there
is no such condition, then all the conditions are good. If there is only one of them, then it is the only
condition of the second type which is good. Otherwise, there are no good conditions of the second type.

Now, let’s find good conditions of the first type. First, calculate for each position i of the array how many
segments of the first type contain i. If there is only one such segment, let’s find its index. To do this in
linear time, we can use the following classical counting trick:

For each segment of the first type l, r with index i do: f[l] += i; f[r + 1] -= i.

After that, if the position pos is contained in only one segment, its index will be f [1] + . . .+ f [pos].

Then, if the position is contained in only one segment, let’s write down the index of this segment into
this position. It is easy to see that written indices will form contiguous groups (there will be no situations
like a..b..a). After that, iterate over all conditions of the second type: if it’s not violated initially (there
is at least one zero on the corresponding segment), then we can skip it. Otherwise, the index of the
good condition of the first type should be written at least once on this segment. Because of the previous
observation, we can see that good conditions of the first type will form some segment of indices, so to
find all good conditions, we should just intersect the segments of indices for all violated conditions of the
second type.

The time complexity is O(n logC), though it requires careful implementation to make it work fast.

Problem Tutorial: “F. Border Similarity Undertaking”
We will use a divide-and-conquer approach. Without loss of generality, suppose that n ≤ m (rotate the
matrix and the answer will stay the same). If we divide the matrix by central column, we need to calculate
the number of rectangles passing through this column. Let’s fix two cells on the central column. After
that, we can see that there are two independent problems in the left and right parts of the matrix: count
the number of rectangles that have the fixed cells as corners and have the same letter on the border except
for the side that lies on the central column. This can be easily done using prefix sums.

The time complexity is O(nm log(nm)).

Problem Tutorial: “G. Biological Software Utilities”
If n is odd, then the answer is obviously 0. Assume that n is even.
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Note that if a tree has a perfect matching, then this matching unique. So, the number of trees which have
perfect matching is a product of the following values:

1. the number of ways to split vertices into pairs;

2. the number of ways to connect n
2 pairs into a tree.

One can see that the first number is (n− 1)!! = (n− 1) · ... · 3 · 1. To calculate the second number, we can
notice that we need to add n

2 −1 edges. When we add each edge between vertices in particular pairs, there
are 4 options of choosing which vertices in pairs will be connected by this edge. So, the second number is
(number of trees with n

2 vertices) ·4
n
2
−1 = (n2 )

n
2
−2 · 4

n
2
−1.

In conclusion, the answer is equal to (n− 1)!! · (n2 )
n
2
−2 · 4

n
2
−1.

Problem Tutorial: “H. Bytelandia States Union”
Consider a path that passes through cells (x1, y1), (x2, y2), (x3, y3), . . . (xk, yk). One can observe that the
amount of time for this path is equal to

T = x2ky
2
k − x21y

2
1 +

k−1∑
i=1

x2i + y2i .

It means that we can immediately add x2ky
2
k − x21y

2
1 − x2k − y2k to the answer (since this part depends only

on endpoints, not on the path itself) and focus on minimizing
k∑

i=1
x2i + y2i , i. e. the sum of x2i + y2i over all

the visited squares.

To minimize the sum over x2i + y2i , one can try various paths and notice the pattern. First, we focus on
the case where x1 ≤ x2 and y1 ≤ y2. In the same way, we consider a similar case x2 ≤ x1 and y2 ≤ y1.
Handle these two cases as one by flipping the endpoints.

The picture below shows an optimal strategy for different endpoints on the rectangle:

The diagonal x = y is marked red on the picture. As one can notice, we do the following: move from the
first endpoint to the diagonal, then go alongside the diagonal, and then move to the second endpoint. We
go only up and right, i. e. always increasing one of the coordinates. If we cannot reach the diagonal by
always increasing one of the coordinates, we just go as near as possible to it.
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The other major case is x1 ≤ x2 and y1 ≥ y2. In this case, we go down to decrease y, and then go right
to increase x.

One should implement these strategies carefully and calculate all the segments of the path in constant
time, using the formula

12 + 22 + · · ·+ k2 =
k(k + 1)(2k + 1)

6
.

The time complexity is O(n).

Problem Tutorial: “I. Binary Supersonic Utahraptors”
|ay − br| = |ay − (m− by)| = |(ay + by)−m|, so the score does not depend on moves of the players.

Problem Tutorial: “J. Burnished Security Updates”
It is clear from the definition that we need to find a set of vertices of a minimum size such that each edge
of the graph has exactly one of its endpoints from the set. It means that each edge connects a chosen
vertex with one that is not chosen. Therefore, the graph is bipartite, and its left part consists of all chosen
vertices.

From this observation, we check that all connected components of the graph are bipartite and take the
smallest part from each component to the final set. This solution runs in O(n+m).

Problem Tutorial: “K. Bookcase Solidity United”
First, one should notice that it is not always optimal to break shelves from top to bottom. The second
example in the statements clearly shows it.

Notice that the balls do not always fall one by one. When a shelf breaks, many balls fall simultaneously.
The pattern of the falling balls matters. If too many balls fall at the same time, they all collide with the
next shelf and get lost. If the same amount of balls falls one by one, then some of them don’t collide with
the next shelf, so more balls remain.

Let’s fix the shelves on which we put the balls. After that, the optimal strategy is to put the balls onto
the fixed shelves from bottom to top. Why so? Suppose we want to put the balls onto some shelf, and we
have already put some balls above. If we don’t want to destroy this shelf now, nothing changes if we put
these balls before the balls above. If we want to destroy it, then we could have put these balls before we
put something onto shelves above, and nothing would change either.

Now, let’s use dynamic programming. Let dp[l][r][k] be the minimum amount of balls to destroy all the
shelves from l to r, assuming that no balls fall from the above and k balls fall below the r-th shelf after
destruction. We assume that these k balls fall simultaneously. As shown above, this assumption doesn’t
make the answer better, and if it doesn’t hold in reality, this state of DP is just not optimal.

Now, we need to define the transitions. Initially, dp[l][l][al/2] = al and all other states are assigned to
infinity. To which states can we go from dp[l][r][k]? We consider different scenarios. First, assume that
we haven’t put enough balls onto the (r + 1)-st shelf, and it’s solid before we start to put balls onto the
r-th shelf and above. In this case, we update dp[l][r+1][max{k, ar+1}/2] = dp[l][r][k]+max{0, ar+1−k},
i. e. put the balls onto the (r + 1)-st shelf in such a way that it would break immediately after we
destroy the segment [l; r]. Otherwise, we broke the (r+ 1)-st shelf before we started to break [l; r]. Then,
the segment [r + 1; p] is already broken for some p ≤ r + 1. So, we iterate over p and k1 and update
dp[l][p][k + k1] = dp[l][r][k] + dp[r + 1][p][k1].

The final step is to notice that in DP, we need to consider only such k for which k ≤ max ai. Indeed, if no
more than max ai balls can fall onto a shelf simultaneously, then no more than ai+max ai

2 ≤ max ai balls
can fall below simultaneously. Using this fact and knowing that there exists a shelf for which nothing falls
from above, we can prove by induction that only k ≤ max ai is needed.

The answer for prefix [0; i] can be obtained as a minimum of dp[0][i][k] over all k.
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Let’s estimate the time complexity. Assume that m = max ai. We have O(n2 ·m) states and O(n3 ·m2)
transitions, so the time complexity is O(n3 · m2). But the constant factor is pretty low, and some DP
states are never used.

Problem Tutorial: “L. Business Semiconductor Units”
The first thing to say about this problem is that the given instruction set is Turing-complete (see the
paper http://stedolan.net/research/mov.pdf for details).

Let’s deduce more complex operations using the given simple operations:

• Conditionals. The most essential part is to learn how to perform conditional loads and stores. The
idea here is simple. Let’s assume that false is equal to constant 255 · 256 = 65280, and true is
equal to 255 · 256 + 2 = 65282. So, we perform ld a, b if condition in the register c is true, in the
following way:

imm r15, 65280

st r15, a

ld r14, b

imm r15, 65282

st r15, r14

ld a, c

As you can see, the original value in the register a is loaded to the address 65280, and the new value
is loaded to the address 65282. Then, we load the value to a according to the condition in c. If it’s
false, the same value is loaded back to a, otherwise, the new value is loaded.

• Moving from register to register. This is as simple as

imm r15, 65284

st r15, a

ld r15, b

• Getting or changing the upper part. To achieve this, we may read or write from the address shifted
by one. For example, if we want to change the upper part of a to 142, we may do the following:

imm r15, 65284

st r15, a

imm r15, 65285

imm r14, 142

st r15, r14

imm r15, 65284

ld a, r15

In st r15, r14, we overwrite the upper part of a with 142, and then we load the modified value
back. We can use the same trick to retrieve the upper part of the number or shift the number by 8
digits right.

We further assume that cup a, b, c sets the upper part of b to some constant c and stores the
modified value into a.

• Equality check. First, learn how to check whether the lower parts of the numbers are equal, the
upper parts are checked in the same manner. If all the memory cells from 253 · 256 = 64768 to
254 · 256 = 65024 are zeroed, then we can do the following to compare the lower parts of the
registers a and b:

cup r15, a, 253

cup r14, b, 253

imm r13, 2
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st r15, r13

ld r13, r14

cup r13, r13, 255

imm r14, 0

st r15, r14

This works as follows. We put 2 to the address 253 · 256 + low(a) and then read the number from
253 · 256 + low(b). If low(a) = low(b), then we get 2 in the lower part, otherwise, we get 0. If we
add 255 to the upper part, then the value (stored in r13 in the code above) will be equal to true if
low(a) = low(b), and false otherwise. Finally, we clean up.

Now, we move to more complex operations. The essential part is how to perform additions and
multiplications. For this purpose, we will perform all the calculations in the base 16. So, we may want
to compute x mod 16 and ⌊ x

16⌋ for the lower part of the number. This can be done with precomputed
tables. Consider ⌊ x

16⌋, other operations can be done in the same manner. For this purpose, we may store
the value of ⌊ x

16⌋ at the address 252 · 256+ x. To find ⌊ a
16⌋ for the value in the register a and to place the

result into b, we do the following:

cup b, a, 252

ld b, b

cup b, b, 0

Now, consider how to calculate a ·16+ b. To do this, we need 16 tables, each of them consists of 16 values.
Suppose that the first table starts from address 234 · 256, the second table starts from address 235 · 256
and so on. The j-th value in the i-th table contains the value i · 16 + j. There is also an index table,
starting from the address 233 · 256. The i-th value of the index table contains 234+ i, i. e. the upper part
of the start address for the i-th table. Then, the operation looks as follows, assuming that the result is
stored in c:

cup r15, a, 233

ld r15, r15

cup r15, r15, 0

cup r14, b, r15

ld c, r14

Using the operations described above, addition and multiplication can be performed using the standard
algorithm. To store the results for a+ b when a and b are hexadecimal digits, one can compute a · 16 + b
and store the result for a+ b in some table by index a · 16 + b.

Now, let’s take a broad look at the whole algorithm. We store the following variables:

• sz, the size of the array;

• pos, the position in the array;

• ptr, the pointer to the next number (basically, position multiplied by two);

• res, the accumulator (i. e. product of all the processed numbers);

• cs, the condition whether the program has started or not;

• ce, the condition whether the program has processed all the required numbers or not.

Some of these variables can be stored in registers, and some of them can be stored in memory to save
valuable space in the registers.

Now, the algorithm is performed as follows:
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1. fill the tables to precompute the operations;

2. if cs = 0, then it’s the first step, so we assign res = 1 and cs = true;

3. if ce = 0 and pos = sz, then put the result into r0 and set ce = 1. Some operations will be done
later, but they won’t affect r0 and ce, so it will be the final answer;

4. read the value pointed by ptr into some memory cell tmp, increase pos by one and ptr by two;

5. decompose tmp and res into the base 16;

6. perform multiplication;

7. store the result back in res.

One can notice that we process a single element on each step, so we require n steps to finish the
computation.

Careful implementation is required for this problem. Use registers and memory in such a way that the
operations do not clobber registers for each other. Also, the registers should be used reasonably because
there are only 16 registers.

Note that the constraints on the number of operations are rather loose for this problem. The model solution
can achieve the result in 5000 operations. By the way, the authors of the problem have a solution that
calculates everything in the base 2 instead of the base 16 and requires approximately 50 000 instructions.

Problem Tutorial: “M. Brilliant Sequence of Umbrellas”
Let’s try to obtain an infinite sequence {ai} such that for any n, the sequence has a prefix that satisfies
all requirements.

Denote g0 = 1, gi = gcd(ai, ai+1). Clearly, ai should be divisible by both gi−1 and gi, so let’s assume
ai = bi · lcm(gi−1, gi). Rewriting the definition of gi using the previous formula, we can obtain that for all
i ≥ 1, gcd(bi · lcm(gi−1, gi), bi+1 · lcm(gi, gi+1)) = gi should hold.

If we consider the degrees of a certain prime in the variables of the above equation, we can imply that
gcd(bi, bi+1) = 1, and that gi is divisible by gcd(gi−1, gi+1).

For simplicity, we can try bi = 1, gcd(gi, gi+1) = gcd(gi, gi+2) = 1 for all i ≥ 1, and that will be enough
to satisfy all requirements except the length of the sequence.

We can obtain the sequence {gi}+∞
i=1 greedily by adding positive integers one by one, as long as they are

coprime with two most recently added numbers. We can prove using induction that a number is present
in the resulting sequence of this greedy process iff its remainder modulo 6 is in {1, 2, 3, 5}. Using these
values of gcd, we can obtain the sequence {ai} = {1 · 1, 1 · 2, 2 · 3, 3 · 5, 5 · 7, 7 · 8, . . .}, for which we can
prove that ai ≤ 9

4 i
2 holds for any i, thus for any n we’ll be able to pick a suitable prefix.

Problem Tutorial: “N. Best Solution Unknown”
Let’s check when the participant i can win the competition. Notice that any match without the person i
is unprofitable for them because it boosts their opponents. That’s why the person i will participate in all
matches.

Also, we can see that a person with the largest strength can win the competition by winning all the
opponents one by one.

Let m be an index of any participant with the largest strength. Notice that the participant who beats the
person m in their match can win the whole competition. Now, for the person i < m, the winning strategy
is to beat all the opponents on positions from 1 to m− 1, then beat m, and then beat the rest (they can
do it in such order because am is the largest strength). Assume that the person i < m can beat all the
opponents on positions from 1 to m−1. The person i can beat m iff am ≤ ai+m−2, or am−m+2 ≤ ai.
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Now, let’s solve the problem in the range of participants [L,R] with an additional statement that requires
the initial strength of the winner to be not less than some constant C. The initial problem is (L = 1,
R = n, C = 0). Let M be the index of any of the participants with the largest strength in the range
[L,R]. Then the person M can beat all the other participants in the range, and this person can be the
winner iff C ≤ aM . Divide [L,R] into two segments [L,M −1], [M +1, R]. We need to solve a subproblem
on the range [L,M − 1] with the additional statement max{C, aM − M + L + 1} ≤ ai. We also do the
same for the range [M + 1, R] with a similar additional statement.

This way, we have O(n) calls of a recursive function, and for each call, we need to find the largest element
on a range. This can be done using a segment tree (or sparse tables), so the overall complexity is O(n log n).
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