
36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem A. Digits Are Not Just Characters
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 512 mebibytes

Mr. Manuel Majorana Minore made a number of files with numbers in their names. He wants to have a list of the
files, but the file listing command commonly used lists them in an order different from what he prefers, interpreting
digit sequences in them as ASCII code sequences, not as numbers. For example, the files file10, file20 and
file3 are listed in this order.

Write a program which decides the orders of file names interpreting digit sequences as numeric values.

Each file name consists of uppercase letters (from ‘A’ to ‘Z), lowercase letters (from ‘a’ to ‘z’), and digits (from ‘0’
to ‘9’).

A file name is looked upon as a sequence of items, each being either a letter or a number. Each single uppercase
or lowercase letter forms a letter item. Each consecutive sequence of digits forms a number item.

Two item are ordered as follows.

• Number items come before letter items.

• Two letter items are ordered by their ASCII codes.

• Two number items are ordered by their values when interpreted as decimal numbers.

Two file names are compared item by item, starting from the top, and the order of the first different corresponding
items decides the order of the file names. If one of them, say A, has more items than the other, B, and all the
items of B are the same as the corresponding items of A, B should come before.

For example, three file names in Sample Input 1, file10, file20, and file3 all start with the same sequence of
four letter items ‘f’, ‘i’, ‘l’, and ‘e’, followed by a number item, 10, 20, and 3, respectively. Comparing numeric
values of these number items, they are ordered as file3 < file10 < file20.

Input

The integer n in the first line of the input gives the number of file names (s1 through sn) to be compared with the
file name given in the next line (s0). Here, n satisfies 1 ≤ n ≤ 1000. The following n + 1 lines are file names, s0
through sn, one in each line. They have at least one and no more than nine characters. Each of the characters is
either an uppercase letter, a lowercase letter, or a digit.

Sequences of digits in the file names never start with a digit zero (0).

Output

For each of the file names, s1 through sn, output one line with a character indicating whether it should come before
s0 or not. The character should be ‘-’ if it is to be listed before s0; otherwise, it should be ‘+’, including cases
where two names are identical.

Page 1 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Examples

standard input standard output

2

file10

file20

file3

+

-

11

X52Y

X

X5

X52

X52Y

X52Y6

32

ABC

XYZ

x51y

X8Y

X222

-

-

-

+

+

-

-

+

+

-

+

Page 2 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem B. Arithmetic Progressions
Input file: standard input

Output file: standard output

Time limit: 5 seconds
Memory limit: 512 mebibytes

An arithmetic progression is a sequence of numbers a1, a2, . . . , ak where the difference of consecutive members
ai+1 − ai is a constant (1 ≤ i ≤ k − 1). For example, the sequence 5, 8, 11, 14, 17 is an arithmetic progression of
length 5 with the common difference 3.

In this problem, you are requested to find the longest arithmetic progression which can be formed selecting some
numbers from a given set of numbers. For example, if the given set of numbers is {0, 1, 3, 5, 6, 9}, you can form
arithmetic progressions such as 0, 3, 6, 9 with the common difference 3, or 9, 5, 1 with the common difference −4.
In this case, the progressions 0, 3, 6, 9 and 9, 6, 3, 0 are the longest.

Input

The input consists of a single test case of the following format.

n

v1 v2 . . . vn

n is the number of elements of the set, which is an integer satisfying 2 ≤ n ≤ 5000. Each vi (1 ≤ i ≤ n) is an
element of the set, which is an integer satisfying 0 ≤ vi ≤ 109. vi’s are all different, i.e., vi = vj if and only if i = j.

Output

Output the length of the longest arithmetic progressions which can be formed selecting some numbers from the
given set of numbers.

Examples

standard input standard output

6

0 1 3 5 6 9

4

7

1 4 7 3 2 6 5

7

5

1 2 4 8 16

2

Page 3 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem C. Emergency Evacuation
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 512 mebibytes

The Japanese government plans to increase the number of inbound tourists to forty million in the year 2020, and
sixty million in 2030. Not only increasing touristic appeal but also developing tourism infrastructure further is
indispensable to accomplish such numbers.

One possible enhancement on transport is providing cars extremely long and/or wide, carrying many passengers
at a time. Too large a car, however, may require too long to evacuate all passengers in an emergency. You are
requested to help estimating the time required. The car is assumed to have the following seat arrangement.

• A center aisle goes straight through the car, directly connecting to the emergency exit door at the rear center
of the car.

• The rows of the same number of passenger seats are on both sides of the aisle. A rough estimation requested
is based on a simple step-wise model. All passengers are initially on a distinct seat, and they can make one
of the following moves in each step.

• Passengers on a seat can move to an adjacent seat toward the aisle. Passengers on a seat adjacent to the
aisle can move sideways directly to the aisle.

• Passengers on the aisle can move backward by one row of seats. If the passenger is in front of the emergency
exit, that is, by the rear-most seat rows, he/she can get off the car.

The seat or the aisle position to move to must be empty; either no other passenger is there before the step, or the
passenger there empties the seat by moving to another position in the same step. When two or more passengers
satisfy the condition for the same position, only one of them can move, keeping the others wait in their original
positions.

The leftmost figure of Figure C.1 depicts the seat arrangement of a small car given in Sample Input 1. The car
have five rows of seats, two seats each on both sides of the aisle, totaling twenty. The initial positions of seven
passengers on board are also shown.

The two other figures of Figure C.1 show possible positions of passengers after the first and the second steps.
Passenger movements are indicated by fat arrows. Note that, two of the passengers in the front seat had to wait
for a vacancy in the first step, and one in the second row had to wait in the next step.

Your task is to write a program that gives the smallest possible number of steps for all the passengers to get off
the car, given the seat arrangement and passengers initial positions.

Input

The input consists of a single test case of the following format.

r s p

i1 j1

. . .

ip jp

Page 4 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Here, r is the number of passenger seat rows, s is the number of seats on each side of the aisle, and p is the number
of passengers. They are integers satisfying 1 ≤ r ≤ 500, 1 ≤ s ≤ 500, and 1 ≤ p ≤ 2rs.

The following p lines give initial seat positions of the passengers. The k-th line with ik and jk means that the k-th
passenger’s seat is in the ik-th seat row and it is the jk-th seat on that row. Here, rows and seats are counted from
front to rear and left to right, both starting from one. They satisfy 1 ≤ ik ≤ r and 1 ≤ jk ≤ 2s. Passengers are on
distinct seats, that is, ik 6= il or jk 6= jl holds if k 6= l.

Output

The output should be one line containing a single integer, the minimum number of steps required for all the
passengers to get off the car.

Examples

standard input standard output

5 2 7

1 1

1 2

1 3

2 3

2 4

4 4

5 2

9

500 500 16

1 1

1 2

1 999

1 1000

2 1

2 2

2 999

2 1000

3 1

3 2

3 999

3 1000

499 500

499 501

499 999

499 1000

1008

Page 5 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem D. Shortest Common Non-Subsequence
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

A subsequence of a sequence P is a sequence that can be derived from the original sequence P by picking up some
or no elements of P preserving the order. For example, “ICPC” is a subsequence of “MICROPROCESSOR”.

A common subsequence of two sequences is a subsequence of both sequences. The famous longest common subse-
quence problem is finding the longest of common subsequences of two given sequences.

In this problem, conversely, we consider the shortest common non-subsequence problem: Given two sequences
consisting of 0 and 1, your task is to find the shortest sequence also consisting of 0 and 1 that is a subsequence of
neither of the two sequences.

Input

The input consists of a single test case with two lines. Both lines are sequences consisting only of 0 and 1. Their
lengths are between 1 and 4000, inclusive.

Output

Output in one line the shortest common non-subsequence of two given sequences. If there are two or more such
sequences, you should output the lexicographically smallest one. Here, a sequence P is lexicographically smaller
than another sequence Q of the same length if there exists k such that P1 = Q1, . . ., Pk−1 = Qk−1, and Pk < Qk,
where Si is the i-th character of a sequence S.

Example

standard input standard output

0101

1100001

0010

101010101

010101010

000000

11111111

00000000

01

Page 6 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem E. Eulerian Flight Tour
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 512 mebibytes

You have an airline route map of a certain region. All the airports in the region and all the non-stop routes between
them are on the map. Here, a non-stop route is a flight route that provides non-stop flights in both ways.

Named after the great mathematician Leonhard Euler, an Eulerian tour is an itinerary visiting all the airports in
the region taking a single flight of every non-stop route available in the region.

To be precise, it is a list of airports, satisfying all of the following.

• The list begins and ends with the same airport.

• There are non-stop routes between pairs of airports adjacent in the list.

• All the airports in the region appear at least once in the list. Note that it is allowed to have some airports
appearing multiple times.

• For all the airport pairs with non-stop routes in between, there should be one and only one adjacent appearance
of two airports of the pair in the list in either order.

It may not always be possible to find an Eulerian tour only with the non-stop routes listed in the map. Adding
more routes, however, may enable Eulerian tours. Your task is to find a set of additional routes that enables
Eulerian tours.

Input

The input consists of a single test case.

n m

a1 b1

. . .

am bm

n (3 ≤ n ≤ 100) is the number of airports. The airports are numbered from 1 to n. m (0 ≤ m ≤ n(n− 1)) is the
number of pairs of airports that have non-stop routes. Among the m lines following it, integers ai and bi on the
i-th line of them (1 ≤ i ≤ m) are airport numbers between which a non-stop route is operated. You can assume
1 ≤ ai < bi ≤ n, and for any i 6= j, either ai 6= aj or bi 6= bj holds.

Output

Output a set of additional non-stop routes that enables Eulerian tours. If two or more different sets will do, any
one of them is acceptable. The output should be in the following format.

k

c1 d1

. . .

ck dk

k is the number of non-stop routes to add, possibly zero. Each of the following k lines should have a pair of integers,
separated by a space. Integers ci and di in the i-th line (ci < di) are airport numbers specifying that a non-stop
route is to be added between them. These pairs, (ci, di) for 1 ≤ i ≤ k, should be distinct and should not appear in
the input. If adding new non-stop routes can never enable Eulerian tours, output -1 in a line.

Page 7 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Examples

standard input standard output

4 2

1 2

3 4

2

1 4

2 3

6 9

1 4

1 5

1 6

2 4

2 5

2 6

3 4

3 5

3 6

-1

6 7

1 2

1 3

1 4

2 3

4 5

4 6

5 6

3

1 5

2 4

2 5

4 3

2 3

2 4

3 4

-1

5 5

1 3

1 4

2 4

2 5

3 5

0

Page 8 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem F. Fair Chocolate-Cutting
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

You are given a flat piece of chocolate of convex polygon shape. You are to cut it into two pieces of precisely the
same amount with a straight knife.

Write a program that computes, for a given convex polygon, the maximum and minimum lengths of the line
segments that divide the polygon into two equal areas.

The figures below correspond to first two sample inputs. Two dashed lines in each of them correspond to the
equal-area cuts of minimum and maximum lengths.

Input

The input consists of a single test case of the following format.

n

x1 y1

. . .

xn yn

The first line has an integer n, which is the number of vertices of the given polygon. Here, n is between 3 and
5000, inclusive. Each of the following n lines has two integers xi and yi, which give the coordinates (xi, yi) of the
i-th vertex of the polygon, in counterclockwise order. Both xi and yi are between 0 and 105, inclusive.

The polygon is guaranteed to be simple and convex. In other words, no two edges of the polygon intersect each
other and interior angles at all of its vertices are less than 180 degrees.

Output

Two lines should be output. The first line should have the minimum length of a straight line segment that
partitions the polygon into two parts of the equal area. The second line should have the maximum length of such
a line segment. The answer will be considered as correct if the values output have an absolute or relative error less
than 10−6.

Page 9 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Examples

standard input standard output

4

0 0

10 0

10 10

0 10

10

14.142135623730950488

3

0 0

6 0

3 10

4.2426406871192851464

10.0

5

0 0

99999 20000

100000 70000

33344 63344

1 50000

54475.580091580027976

120182.57592539864775

6

100 350

101 349

6400 3440

6400 3441

1200 7250

1199 7249

4559.2050019027964982

6216.7174287968524227

Page 10 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem G. What Goes Up Must Come Down
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 512 mebibytes

Several cards with numbers printed on them are lined up on the table.

We’d like to change their order so that first some are in non-decreasing order of the numbers on them, and the rest
are in non-increasing order. For example, (1, 2, 3, 2, 1), (1, 1, 3, 4, 5, 9, 2), and (5, 3, 1) are acceptable orders,
but (8, 7, 9) and (5, 3, 5, 3) are not.

To put it formally, with n, the number of cards and bi, the number printed on the card, at the i-th position
(1 ≤ i ≤ n) after reordering, there should exist k ∈ {1, . . . , n} such that (bi ≤ bi+1 for all i ∈ {1, . . . , k − 1})
and (bi ≥ bi+1 for any i ∈ {k, . . . , n − 1}) hold. For reordering, the only operation allowed at a time is to swap
the positions of an adjacent card pair. We want to know the minimum number of swaps required to complete the
reorder.

Input

The input consists of a single test case of the following format.

n

a1 . . . an

An integer n in the first line is the number of cards (1 ≤ n ≤ 105). Integers a1 through an in the second line are
the numbers printed on the cards, in the order of their original positions (1 ≤ ai ≤ 105).

Output

Output in a line the minimum number of swaps required to reorder the cards as specified.

Examples

standard input standard output

7

3 1 4 1 5 9 2

3

9

10 4 6 3 15 9 1 1 12

8

8

9 9 8 8 7 7 6 6

0

6

8 7 2 5 4 6

4

Page 11 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem H. Four-Coloring
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 512 mebibytes

You are given a planar embedding of a connected graph. Each vertex of the graph corresponds to a distinct point
with integer coordinates. Each edge between two vertices corresponds to a straight line segment connecting the
two points corresponding to the vertices. As the given embedding is planar, the line segments corresponding to
edges do not share any points other than their common endpoints. The given embedding is organized so that
inclinations of all the line segments are multiples of 45 degrees. In other words, for two points with coordinates
(xu, yu) and (xv, yv) corresponding to vertices u and v with an edge between them, one of xu = xv, yu = yv, or
|xu − xv| = |yu − yv| holds.

Your task is to color each vertex in one of the four colors, {1, 2, 3, 4}, so that no two vertices connected by an
edge are of the same color. According to the famous four color theorem, such a coloring is always possible. Please
find one.

Input

The input consists of a single test case of the following format.

n m

x1 y1

. . .

xn yn

u1 v1

. . .

um vm

The first line contains two integers, n and m. n is the number of vertices and m is the number of edges satisfying
3 ≤ n ≤ m ≤ 104. The vertices are numbered 1 through n. Each of the next n lines contains two integers. Integers
on the v-th line, xv (0 ≤ xv ≤ 1000) and yv (0 ≤ yv ≤ 1000), denote the coordinates of the point corresponding to
the vertex v. Vertices correspond to distinct points, i.e., (xu, yu) 6= (xv, yv) holds for u = v. Each of the next m
lines contains two integers. Integers on the i-th line, ui and vi , with 1 ≤ ui < vi ≤ n, mean that there is an edge
connecting two vertices ui and vi.

Output

The output should consist of n lines. The v-th line of the output should contain one integer cv ∈ {1, 2, 3, 4} which
means that the vertex v is to be colored cv. The output must satisfy cu 6= cv for every edge connecting u and v in
the graph. If there are multiple solutions, you may output any one of them.

Page 12 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Examples

standard input standard output

5 8

0 0

2 0

0 2

2 2

1 1

1 2

1 3

1 5

2 4

2 5

3 4

3 5

4 5

1

2

2

1

3

6 10

0 0

1 0

1 1

2 1

0 2

1 2

1 2

1 3

1 5

2 3

2 4

3 4

3 5

3 6

4 6

5 6

1

2

3

4

2

1

Page 13 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem I. Ranks
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 512 mebibytes

A finite field F2 consists of two elements: 0 and 1. Addition and multiplication on F2 are those on integers modulo
two, as defined below.

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

A set of vectors v1, . . ., vk over F2 with the same dimension is said to be linearly independent when, for
c1, . . . , ck ∈ F2, c1v1 + . . . + ckvk = 0 is equivalent to c1 = . . . = ck = 0, where 0 is the zero vector, the
vector with all its elements being zero.

The rank of a matrix is the maximum cardinality of its linearly independent sets of column vectors. For example,

the rank of the matrix

[
0 0 1
1 0 1

]
is two; the column vectors

[
0
1

]
and

[
1
1

]
(the first and the third columns) are

linearly independent while the set of all three column vectors is not linearly independent. Note that the rank is
zero for the zero matrix.

Given the above definition of the rank of matrices, the following may be an intriguing question. How does a
modification of an entry in a matrix change the rank of the matrix? To investigate this question, let us suppose
that we are given a matrix A over F2. For any indices i and j, let A(ij) be a matrix equivalent to A except that the

(i, j) entry is flipped, i.e. A
(ij)
kl = Akl + 1 for both equations k = i and l = i are held, and A

(ij)
kl = Akl otherwise.

In this problem, we are interested in the rank of the matrix A(ij). Let us denote the rank of A by r, and that of
A(ij) by r(ij). Your task is to determine, for all (i, j) entries, the relation of ranks before and after flipping the
entry out of the following possibilities: (1) r(ij) < r, (2) r(ij) = r, or (3) r(ij) > r.

Input

The input consists of a single test case of the following format.

n m

A11 . . . A1m

. . .

An1 . . . Anm

n and m are the numbers of rows and columns in the matrix A, respectively (1 ≤ n ≤ 1000, 1 ≤ m ≤ 1000). In
the next n lines, the entries of A are listed without spaces in between. Aij is the entry in the i-th row and j-th
column, which is either 0 or 1.

Output

Output n lines, each consisting of m characters. The character in the i-th line at the j-th position must be either
‘-’ (minus), ‘0’ (zero), or ‘+’ (plus). They correspond to the possibilities (1), (2), and (3) in the problem statement
respectively.

Page 14 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Examples

standard input standard output

2 3

001

101

-0-

-00

5 4

1111

1000

1000

1000

1000

0000

0+++

0+++

0+++

0+++

10 10

1000001001

0000010100

0000100010

0001000001

0010000010

0100000100

1000001000

0000010000

0000100000

0001000001

000-00000-

0-00000-00

00-00000-0

+00000+000

00-0000000

0-00000000

000-00000-

0-000-0-00

00-0-000-0

+00000+000

1 1

0

+

Page 15 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem J. Colorful Tree
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

A tree structure with some colors associated with its vertices and a sequence of commands on it are given. A
command is either an update operation or a query on the tree. Each of the update operations changes the color
of a specified vertex, without changing the tree structure. Each of the queries asks the number of edges in the
minimum connected subgraph of the tree that contains all the vertices of the specified color.

Your task is to find answers of each of the queries, assuming that the commands are performed in the given order.

Input

The input consists of a single test case of the following format.

n
a1 b1
. . .
an−1 bn−1

c1 . . . cn
m
command1
. . .
commandm

The first line contains an integer n (2 ≤ n ≤ 105), the number of vertices of the tree. The vertices are numbered 1 through
n. Each of the following n − 1 lines contains two integers ai (1 ≤ ai ≤ n) and bi (1 ≤ bi ≤ n), meaning that the i-th edge
connects vertices ai and bi. It is ensured that all the vertices are connected, that is, the given graph is a tree. The next
line contains n integers, c1 through cn, where cj (1 ≤ cj ≤ 105) is the initial color of vertex j. The next line contains an
integer m (1 ≤ m ≤ 105), which indicates the number of commands. Each of the following m lines contains a command in
the following format: “U xk yk” or “Q yk”.

When the k-th command starts with ‘U’, it means an update operation changing the color of vertex xk (1 ≤ xk ≤ n) to yk
(1 ≤ yk ≤ 105). When the k-th command starts with ‘Q’, it means a query asking the number of edges in the minimum
connected subgraph of the tree that contains all the vertices of color yk (1 ≤ yk ≤ 105).

Output
For each query, output the number of edges in the minimum connected subgraph of the tree containing all the vertices of
the specified color. If the tree doesn’t contain any vertex of the specified color, output -1 instead.

Example

standard input standard output

5

1 2

2 3

3 4

2 5

1 2 1 2 3

11

Q 1

Q 2

Q 3

Q 4

U 5 1

Q 1

U 3 2

Q 1

Q 2

U 5 4

Q 1

2

2

0

-1

3

2

2

0

Page 16 of 17

36th Petrozavodsk Programming Camp, Winter 2019
Day 3: The Japanese Contest, Thursday, January 31, 2019

Problem K. Sixth Sense
Input file: standard input

Output file: standard output

Time limit: 7 seconds
Memory limit: 512 mebibytes

Ms. Future is gifted with precognition. Naturally, she is excellent at some card games since she can correctly foresee
every player’s actions, except her own. Today, she accepted a challenge from a reckless gambler Mr. Past. They
agreed to play a simple two-player trick-taking card game.

Cards for the game have a number printed on one side, leaving the other side blank making indistinguishable from
other cards.

A game starts with the same number, say n, of cards being handed out to both players, without revealing the
printed number to the opponent.

A game consists of n tricks. In each trick, both players pull one card out of her/his hand. The player pulling out
the card with the larger number takes this trick. Because Ms. Future is extremely good at this game, they have
agreed to give tricks to Mr. Past when both pull out cards with the same number. Once a card is used, it can never
be used later in the same game. The game continues until all the cards in the hands are used up. The objective of
the game is to take as many tricks as possible.

Your mission of this problem is to help Ms. Future by providing a computer program to determine the best playing
order of the cards in her hand. Since she has the sixth sense, your program can utilize information that is not
available to ordinary people before the game.

Input

The input consists of a single test case of the following format.

n

p1 . . . pn

f1 . . . fn

n in the first line is the number of tricks, which is an integer between 2 and 5000, inclusive. The second line
represents the Mr. Past’s playing order of the cards in his hand. In the i-th trick, he will pull out a card with the
number pi (1 ≤ i ≤ n). The third line represents the Ms. Futures hand. fi (1 ≤ i ≤ n) is the number that she will
see on the i-th received card from the dealer. Every number in the second or third line is an integer between 1 and
104, inclusive. These lines may have duplicate numbers.

Output

The output should be a single line containing n integers a1 . . . an separated by a space, where ai (1 ≤ i ≤ n) is
the number on the card she should play at the i-th trick for maximizing the number of taken tricks. If there are
two or more such sequences of numbers, output the lexicographically greatest one among them.

Examples

standard input standard output

5

1 2 3 4 5

1 2 3 4 5

2 3 4 5 1

5

3 4 5 6 7

1 3 5 7 9

9 5 7 3 1

5

3 2 2 1 1

1 1 2 2 3

1 3 1 2 2

5

3 4 10 3 9

2 7 3 6 9

9 7 3 6 2

Page 17 of 17

