
Bergen Open 2021
Solution slides

November 6, 2021

Special thanks:

➢ Greg Hamerly (Kattis)
➢ Olav Røthe Bakken

The jury

➢ Petter Daae
➢ Simen Hornnes
➢ Brigt Arve Toppe Håvardstun
➢ Torstein Strømme
➢ Kristoffer Æsøy

Junior price robot

Author: Torstein Strømme First solved: 00:04 Solved by: 35 teams

➢ Input: A list of numbers
➢ Question: What is the distance between the first element and the next element which

is less than or equal to the first element?
➢ Algorithm:

○ Let a0, a1, …, a(n-1) denote the numbers in the list
○ for i in 1, 2, …, n-1:

■ if ai <= a0: return i
○ else return “infinity”

➢ Runtime: O(n)

Archipelago

Author: Kristoffer Æsøy First solved: 00:06 Solved by: 14 teams

➢ Problem summary: sort the islands by their “airport utility.”
○ Airport utility is defined as how many islands one can reach by travelling at most d kilometers before refuelling

➢ Observation: all islands that can reach each other have the same utility
➢ Algorithm A:

○ Make a graph: compare all islands, make an edge between them if they are within reach of each other
○ Do dfs or bfs to explore the graph. Count how many vertices are discovered for each root
○ Set utility of the discovered vertices found before moving on to the next root
○ Sort the islands by their utility

➢ Runtime: O(n2)

Archipelago

Author: Kristoffer Æsøy First solved: 00:06 Solved by: 14 teams

➢ Problem summary: sort the islands by their “airport utility.”
○ Airport utility is defined as how many islands one can reach by travelling at most d kilometers before refuelling

➢ Observation: all islands that can reach each other have the same utility
➢ Algorithm B:

○ Use union-find. Store size of each component (like a size-balanced union-find would do).
○ For each pair of islands: call union on them if their distance is less than or equal to d
○ Utility of an island is the size of its component
○ Sort the islands by their utility

➢ Runtime: O(n2) (almost regardless of which union-find structure is used)

Coins

Author: Kristoffer Æsøy First solved: 00:10 Solved by: 22 teams

➢ Problem summary: Pick 1, 2 or 3 coins from the pile; avoid to pick the last coin.
➢ Clearly, you’re in a losing position if there’s only 1 coin left
➢ Clearly, you’re in a winning position if there’s 2, 3 or 4 coins left – respectively pick 1, 2 or

3 coins such that your opponent go to the losing position
➢ If there’s 5 coins left, your opponent ends up in a winning position no matter what you do

– hence, you’re in a losing position
➢ If there’s 6, 7 or 8 coins left, you’re in a winning position – respectively pick 1, 2 or 3 coins

to leave your opponent with 5 coins left.
➢ …and so forth.

Coins

Author: Kristoffer Æsøy First solved: 00:10 Solved by: 22 teams

➢ Problem summary: Pick 1, 2 or 3 coins from the pile; avoid to pick the last coin.
➢ Observation: you’re in a losing position if there are 4k + 1 coins left
➢ Strategy: pick the number of coins such that your opponent will have 4k + 1 coins left.

○ If there are 4k coins left (i.e. number of coins % 4 is 0), pick 3
○ If there are 4k+3 coins left (i.e. number of coins % 4 is 3), pick 2
○ If there are 4k+2 coins left (i.e. number of coins % 4 is 2), pick 1

➢ TLE should not be an issue (unless you recursively try every possible game or something)

Glitching screen

Author: Petter Daae First solved: 00:13 Solved by: 21 teams

➢ Problem summary: Can you uniquely identify which picture it is, even when some pixels
are incorrectly set to 0?

➢ Algorithm: just do it
○ For each picture:

■ for each row:
● for each column:

○ if there is an active pixel on the screen, but not in the picture, then it can’t be this picture
○ Output ‘yes’ if the number of qualified pictures is 1

➢ Runtime: O(n)

Irritating accountants

Author: S. Hornnes, T. Strømme, K. Æsøy, and P. Daae First solved: 00:30 Solved by: 15 teams

➢ Problem summary: Sort items according to order of categories the account operates with.

➢ Algorithm:
○ Use a dictionary/hashmap/treemap to map categories to their sorting index
○ Use a dictionary/hashmap/treemap to map items to their category
○ Use a list of lists: append each bought item to the list at their category’s index
○ Print the items in the lists in correct order

➢ Runtime: O(n+m)

King of Cans

Author: Brigt Arve Toppe Håvardstun First solved: 00:38 Solved by: 14 teams

➢ Input: The number of bottles worth 2 and 3 kroners, respectively
➢ Question: How many piles of bottles worth exactly 100 kroners can we create?

➢ Observation: You must always use an even number of 3’s in every pile
○ You can divide the number of 3’s by two (round down) and think of them as 6’s instead

➢ Observation: 2’s are strictly more flexible than 6’s
○ Everything you can do with 6’s you can also do with the same worth of 2’s

➢ Conclusion: Greedily use as many 6’s as possible in each pile.
○ Using 16 of them yields 96 kroners – then use two 2’s to get up to 100

King of Cans

Author: Brigt Arve Toppe Håvardstun First solved: 00:38 Solved by: 14 teams

➢ Input: The number of bottles worth 2 and 3 kroners, respectively
➢ Question: How many piles of bottles worth exactly 100 kroners can we create?

➢ Greedily use as many 6’s as possible in each pile
○ repeat:

■ pick 6’s: min(16, number of remaining 6’s)
■ pick 2’s: as many as necessary to make 100
■ if there were not enough resources, break. Otherwise, increase counter.

➢ Runtime: O(a + b)

King of Cans

Author: Brigt Arve Toppe Håvardstun First solved: 00:38 Solved by: 14 teams

➢ Input: The number of bottles worth 2 and 3 kroners, respectively
➢ Question: How many piles of bottles worth exactly 100 kroners can we create?

➢ Observation: the only way bottles go to waste, is if there are not enough 2’s
○ need at least two 2’s for each pile
○ print(min((6 * sixes + 2 * twos) / 100, twos / 2))

➢ Runtime: O(1)

Doomsday

Author: Simen Hornnes First solved: 00:40 Solved by: 3 teams

➢ Problem summary: Walk from base and fetch water and food before returning to base.

➢ Algorithm:
○ Run Dijkstra from base at location 0.
○ Add two new vertices to the graph:

■ connect the water depots to the first new vertex. Use the distance found in step 1 as weights.
■ connect the food depots to the second new vertex. Use the distance found in step 1 as weights.

○ Run Dijkstra to find distance between the two new nodes.

➢ O(m log n)

Elder price robot

Author: Torstein Strømme First solved: 00:46 Solved by: 10 teams

➢ Problem summary: For each day, calculate how far back you need to go to to find a day
which had a lower price.

➢ Naive algorithm: repeat the algorithm for the junior price robot
○ for each day:

■ step back in time until you find a day with a lower or equal price
■ report number of steps required

➢ O(n2) 😭

Elder price robot

Author: Torstein Strømme First solved: 00:46 Solved by: 10 teams

➢ Problem summary: For each day, calculate how far back you need to go to to find a day
with has a lower price.

➢ Better algorithm
○ maintain a list B which holds the latest date the given price occurred. Initially all infinity long ago.
○ in backwards order of the input list:

■ check the list B for all possible prices <= to today’s price – remember the latest date found
■ Compute difference of dates
■ Update the date of the current price in B

➢ O(n2) 😒

Elder price robot

Author: Torstein Strømme First solved: 00:46 Solved by: 10 teams

➢ Problem summary: For each day, calculate how far back you need to go to to find a day
with has a lower price.

➢ Better algorithm
○ maintain a list B which holds the latest date the given price occurred. Initially all infinity long ago.
○ in backwards order of the input list:

■ check the list B for all possible prices <= to today’s price – remember the latest date found
■ Compute difference of dates
■ Update the date of the current price in B

Using a segment tree

➢ O(n2) O(n log n) 😄

Elder price robot

Author: Torstein Strømme First solved: 00:46 Solved by: 10 teams

➢ Problem summary: For each day, calculate how far back you need to go to to find a day
with has a lower price.

➢ Even better algorithm
○ maintain a stack with pairs (price, date) – the invariant is that both price and date is sorted
○ go through the list backwards:

■ pop all larger prices from the stack
■ the top of the stack now holds the next occurrence of a number smaller or equal

● if empty, then “infinity”
■ put yourself on the stack ➢ O(n) 🤩

100 meter dash

Author: Brigt Arve Toppe Håvardstun First solved: 01:20 Solved by: 4 teams

➢ Problem summary: Given GPS locations with timestamps, what is the fastest 100m?

➢ Naive algorithm:
○ Guess every each location Lstart. Then find the time used to run 100m starting starting from Lstart, and search

forwards to find the nearest location Lend where the distance ran between Lstart and Lend ≥ 100.
○ Add up the time needed at each full segment. Compute the fractional time required for the last segment.
○ Observation: it might be better to let the first segment be fractional; deal with this case by also running

algorithm backwards.
○ Observation: not necessary to account for the case where both starting and ending segments are fractional.

➢ O(n2) 😭

100 meter dash

Author: Brigt Arve Toppe Håvardstun First solved: 01:20 Solved by: 4 teams

➢ Problem summary: Given GPS locations with timestamps, what is the fastest 100m?

➢ Smarter algorithm:
○ Build up a distance array D, D[i] holding total distance from start to Li.

■ Using this we can find the distance (time) between two locations in O(1) time.
○ Use a “sliding window” to move over the list of points::

■ Keep two pointers start and end; when distance Lstart to Lend is smaller than 100, increment end.
■ Otherwise, compute the the time starting at start as before, and then increment start.
■ Remember fastest time as you go.

○ Slide over the points in both directions.

➢ O(n) 😁

Live aid

Author: Petter Daae First solved: 01:27 Solved by: 5 teams

➢ Problem summary: Pick a non-overlapping set of intervals for the concert such that the
attention is maximized. Output the total attention.

➢ Algorithm
○ (Weighted Interval Scheduling)
○ Sort intervals by end time
○ p(i) is the latest interval (by end time) that does not overlap with interval i. Find it by a binary search.
○ DP[i] is the total attention of the optimal scheduling of intervals from 0 to i
○ DP[i+1]=max(DP[i-1], DP[p(i)] + a_i)

➢ O(n log n)

Meticulous smoothing

Author: Torstein Strømme First solved: 02:53 Solved by: 2 teams

➢ Problem summary: Difference in thickness between consecutive sections of wood can be
no more than 1. What are the fewest strokes of sandpaper needed to obtain this?

➢ Each point provides some upper limit
for all other points

Meticulous smoothing

Author: Torstein Strømme First solved: 02:53 Solved by: 2 teams

➢ Each point must respect limits set by all other points on both sides.
○ Requirement depends on height and distance
○ Must respect the strictest requirement

Meticulous smoothing

Author: Torstein Strømme First solved: 02:53 Solved by: 2 teams

➢ Observation: we only need to know the strictest limit from each side.
➢ Algorithm:

○ Walk along the list from left to right, and remember the strictest limit as we go.
○ At each step, the limit imposed by previous items is relaxed/heightened by 1.
○ Compare limit set by previous items with limit given by this item (i.e. the thickness at this point);

keep the strictest limit. Mark the position with the limit.
○ Do the same backwards.
○ Final thickness is minimum of forward and backward limit.
○ Compute the differences for each point, and return their sum.

➢ Runtime: O(n)

F1 racing

Author: B. A. T. Håvardstun, T. Strømme, P. Daae, and S. Hornnes First solved: N/A Solved by: 0 teams

➢ Problem summary: A car uses r+b*x seconds to complete one lap on x laps old tires. Given
r, b, the time a pit stop takes, and the number of laps: what time is needed to finish a race?

➢ Observations:
○ Given a fixed number of pit stops, it is always best to distribute them as evenly as possible through the race.

■ The problem boils down to finding the optimal number of pit stops
■ Time required as a function of pit stops is either

● non-decreasing (pit stop time is very large)
● non-increasing (pit stop time is 0), or
● follows a U-curve

■ Hence, we can ternary search the number of pit stops.

F1 racing

Author: B. A. T. Håvardstun, T. Strømme, P. Daae, and S. Hornnes First solved: N/A Solved by: 0 teams

➢ Problem summary: A car uses r+b*x seconds to complete one lap on x laps old tires. Given
r, b, the time a pit stop takes, and the number of laps: what time is needed to finish a race?

➢ How to find racetime using A pit stops?
○ segments = A+1
○ long_segments = n % segments laps_per_long_segment = ⌈total_laps / segments⌉
○ short_segments = segments - long_segments laps_per_short_segment = ⌊total_laps / segments⌋
○ The rest can be done in O(1) time using math.

■ Sum 1..n → n(n+1)/2

F1 racing

Author: B. A. T. Håvardstun, T. Strømme, P. Daae, and S. Hornnes First solved: N/A Solved by: 0 teams

➢ Problem summary: A car uses r+b*x seconds to complete one lap on x laps old tires. Given
r, b, the time a pit stop takes, and the number of laps: what time is needed to finish a race?

➢ Runtime w/ternary search + constant time calculation: O(log n) 😁
➢ Also accepted:

○ Try every number of pit stops up to square root of number of laps + try every number of laps per segment up
to square root of number of laps, using constant time calculations → O(√n) 🙂

○ Ternary search + linear calculation of sum 1…n accepted in some languages (e.g. C++) → O(n log n) 󰷹

Setting bounds that killed this would have required the use of

128-bit integers or more to avoid overflow issues. So we didn’t.

Bombs

Author: Torstein Strømme First solved: N/A Solved by: 0 teams

➢ Problem summary: Move bombs to their specified locations; at most one movement
through each edge per day, at most one movement for each bomb per day.

➢ Visualize the sample test case:

Bombs

Author: Torstein Strømme First solved: N/A Solved by: 0 teams

➢ Problem summary: Move bombs to their specified locations; at most one movement
through each edge per day, at most one movement for each bomb per day.

➢ Guess (binary search) how many days are needed
➢ Create the “grid graph” of the guessed height
➢ If max flow = # of bombs, try fewer days
➢ Otherwise, try more days

➢ O(n(n+t)(m(n+t))2 log(n + t)) (w/ Edmonds-Karp)

Statistics

➢ Number of teams: 37
➢ Number of participants: 83
➢ Number of submissions: 973

○ of these 8 were submitted by a team for a problem that they had already solved.

➢ Number of accepted submissions: 145
➢ First accepted submission: 00:04:47 (Junior price robot - solved by Game Hoppers)
➢ Last accepted submission: 04:58:49 (Glitching screen - solved by Digitøs)
➢ Number of commits to problem repository: 585

Copyright notes

➢ The problems, solution slides, and other materials produced for Bergen Open 2019 are
released under CC-BY-SA 4.0.

➢ Pictures
○ Archipelago https://www.flickr.com/photos/158674840@N02/32622205467/ CC-BY 2.0, Tom Patterson
○ Bombs https://pixabay.com/vectors/bomb-cartoon-iconic-2025548/ Pixabay License, OpenClipart-Vectors
○ Coins https://www.hippopx.com/en/gold-coin-business-money-pile-gold-coins-stack-325690 CC0
○ Doomsday https://www.flickr.com/photos/42034606@N05/27076955039 Public domain, Coconino NF Photography
○ F1 racing https://www.flickr.com/photos/65667643@N00/125026340 CC-BY-2.0, ariffjamili
○ Glitching screen https://unsplash.com/photos/oW_40ndUnRc Unsplash license, Ivan Heinzer
○ Irritating accountants https://digitaltmuseum.org/011024054047/hink CC-BY 4.0, Flygvapenmuseum
○ Junior/elder price robot https://www.flickr.com/photos/30478819@N08/50958754723 CC-BY 2.0, Marco Verch
○ King of cans https://unsplash.com/photos/-2lJGRIY5P0 Unsplash license, Nick Fewings
○ Live aid https://unsplash.com/photos/hzgs56Ze49s Unsplash License, Anthony Delanoix
○ Meticulous smoothing https://commons.wikimedia.org/wiki/File:Yew-wood.jpg CC-BY-SA 4.0, Tim van de Staak

https://www.flickr.com/photos/158674840@N02/32622205467/
https://pixabay.com/vectors/bomb-cartoon-iconic-2025548/
https://www.hippopx.com/en/gold-coin-business-money-pile-gold-coins-stack-325690
https://www.flickr.com/photos/42034606@N05/27076955039
https://www.flickr.com/photos/65667643@N00/125026340
https://unsplash.com/photos/oW_40ndUnRc
https://digitaltmuseum.org/011024054047/hink
https://www.flickr.com/photos/30478819@N08/50958754723
https://unsplash.com/photos/-2lJGRIY5P0
https://unsplash.com/photos/hzgs56Ze49s
https://commons.wikimedia.org/wiki/File:Yew-wood.jpg

