
Moscow workshop - ICPC Asia Seoul - Editorial

Maksim Gorokhovskii, Ramazan Rakhmatullin

November 2021

A Ant colonies

Let’s consider the case where we have only two types of nodes: turned on and off. Our
query then becomes finding two closest nodes on a path that are both turned on.

This task is easily solvable with standard HLD, for a node in segment tree we store leftmost
turned on node, rightmost turned on node, and best possible answer on a segment. Merging is
obvious.

To solve the original task we have to use the fact that queries are offline. Now we have two
solutions:

• create virtual tree (data structure) for each color beforehand (include query endpoints as
well), then solve an easier version on each virtual tree independently.

• loop through colors and process queries on the original tree, clearing turned on nodes
after finishing with the color.

B Double Rainbow

Let’s fix left endpoint of a segment and iterate right endpoint in increasing order. Each
time amount of elements inside and outside of segment changes only for one color, so we can
find a moment when we have all the colors inside a segment and a moment when some color
become absent outside of a segment.

Time complexity O(n2), though can be optimized to O(n) using two pointers.

C Find The House

Read the statement and do what it says.

D Friendship Graphs

Let’s construct a complement graph. Then we have to divide nodes in two parts such that
the graph becomes bipartite and the absolute difference between sizes of parts is minimum
possible.

If the graph isn’t bipartite, then the answer is −1. Otherwise, each component is represented
as a pair (a, b), and for each pair we assign one of the values for the first part, and the other
value for the second part. The goal is to minimize the absolute difference between parts, which
can be done via knapsack dp in O(n

2

32
) or faster because there are at most

√
n different values.

1

E Grid Triangle

We need to find the number of pairs of points (x, y, z) and (x1, y1, z1) such that all x, y and z
are pairwise distinct integers different from zero, both these points are contained in a rectangle
[−A; A]× [−B; B]× [−C; C] and three sets {|x|, |y|, |z|}, {|x1|, |y1|, |z1|}, {|x−x1|, |y−y1|, |z−
z1|} are the same.

First let’s assume that x, y, z > 0 and in the end multiply answer by 8. Also let’s say that
x > y > z and try all permutations of (A,B,C) instead.

Now we can notice that

• x1 > 0, otherwise |x− x1| > x

• at least one of y1 or z1 is negative, otherwise each of |x−x1|, |y−y1|, |z−z1| is less than x

• x ̸= x1, y ̸= y1, z ̸= z1, otherwise corresponding difference will be 0. This also means
that |y1| = x or |z1| = x, so if both y1 and z1 are negative, then at least one of |z − z1|,
|y − y1| is greater than x, which means that exactly one of y1 and z1 is negative

Let’s consider both cases

• y1 < 0⇒ z1 = x

z1 − z < x, x− x1 < x⇒ y − y1 = x

1. x1 = z, y1 = −y ⇒ x = 2y ⇒ z < x
2
⇒ |x− x1| = x− z > y, which is impossible

2. x1 = y, y1 = −z ⇒ x = y + z

Here we get two points (y + z, y, z) and (y,−z, y + z)

• z1 < 0⇒ y1 = x

Similarly we can get points (y + z, y, z) and (z, y + z,−y)

Now we can iterate over y for example and find the range of suitable z for each one (keep
in mind that z < y)

Total complexity is O(3! · C), where C = 107

F John’s Gift

Given two arrays a and b, we need to remove one element from a to minimize the score
given in the problem.

Let’s sort a and b in increasing order. Then there exists the best matching in terms of a score
that doesn’t have crossing edges. For example, if we have n elements on each side, it means that
the best matching is (ai, bi). On the other hand, if we remove element i from a, then the best
matching would look like (a1, b1) . . . , (al, bl), (al+1, bl+2), . . . , (ai−1, bi), (ai+1, bi+1), . . . , (an, bn) or
in a similar way but the shift would be on the right side.

First, to handle both cases we solve the task twice, one more time for reversed arrays. Now
we assume that the shift is placed left from i. Then we can calculate a simple dp1 and dp2:
dp1[i] is the minimum score on prefix i of a if we had only (ai, bi) edges, while dp2[i] is the
minimum score on prefix i of a if the last edge is (ai, bi+1). Using this dp, calculating answer is
obvious.

2

G Logical Warehouse 2

If I had a dollar for every time I see this problem... (I would have at least 4 dollars)

Let’s say that some vertex is covered if there is a warehouse with the distance at most k
to the vertex. Consider a following greedy algorithm: root a tree and while there are some
uncovered vertices, choose the deepest one, go k steps up (stop at the root if you can’t go
further), and put a warehouse there (let’s say this vertex is u). It’s easy to prove that this
algorithm is correct, since we have to put at least one warehouse in the subtree of vertex u, and
if it’s not u, we can always move warehouse to the parent vertex without leaving some vertices
uncovered.

To do this efficiently, let’s maintain some dp. For a vertex v let’s store the deepest uncovered
vertex in it’s subtree if there is one. Otherwise, store the distance to the closest warehouse. To
merge dp-s of children, find closest warehouse and farthest uncovered vertex among their dp-s.
Check if this warehouse can cover this vertex (sum of their depths from current vertex is at
most k). Then put a warehouse in the parent vertex if there is still an uncovered vertex and
it’s depth is k and then update dp of the vertex accordingly.

Total complexity is O(n)

H Postman

This task is about handling a lot of corner cases. I will omit some corner cases like w = 0
or w = 1, so be sure to write stress test if you want to solve it.

Define a to be the array of positions from the input sorted in ascending order, it to be the
0-based index of the last element less than 0 (−1 if no such exist). For each element we need
to assign how would we end here, → means coming from the left, ← means coming from the
right. We have to construct a path that contains exactly w ←. Let’s say that bi = {←,→}
defines the assignment.

Notice, that if a0 < 0, then b0 =←. Same goes for an−1.
First, let’s solve t = 1 case, where we can finish anywhere.
Consider the case where it = −1 (no elements to the left of the start).

• if w = n, then −1 since an−1 =→

• otherwise consider some assignment. If we have some segment ←, . . . ,←,→, then the
best way to cover it would be to go to the→, then going to the leftmost← while visiting
all points, then proceeding forward to the right (the last part doesn’t exist if→ is actually
the last element).

• if we want to calculate the score of any assignment b, then it would look like an−1 − 0 +∑
i:bi=← (1 + [closest→ to the right is not the last]) · (ai+1 − ai). So the task is to find an

assignment with w ← minimizing this sum. To do that, we can iterate where the second
rightmost (not bn−1)→ would be, say i, then we have to find sum of max(0, w−(n−i−2))
minimum elements among aj − aj−1 for j ≤ i, which can be done with set.

Now we assume that a0 < 0 and an−1 > 0, otherwise we can reverse array and use previous
case. We also solve the task twice, one more time for the reversed array, to make sure that we
can assume that we first go to a0, then go to an−1.

• if w = 0 or w = n, then −1 since a0 =← and an−1 =→

• otherwise we can notice that if w ≤ it+ 1, then the answer is (0− a0) + (an−1 − a0), by
putting required ← to the left.

3

https://atcoder.jp/contests/arc116/tasks/arc116_e

• if w > it + 1, then assign w = w − it − 1, and solve the case it = −1 for the subarray
ait+1 . . . an−1

Done with t = 1, now let’s handle t = 2 case. Say fin to be the index of an element where
we need to finish. We also assume that fin > it, reversing array if that’s not the case.

Before continuing, we need to cover one tricky case. if it ̸= −1 (we have elements on both
side) and w = 1 and fin ̸= n− 1, then our answer would look like (an−1 − 0) + (an−1 − a0) +
(afin− a0). Otherwise I claim (without proof) that the answer would always look like going to
a0 then going to the right part ait+1 . . . an−1 and doing some stuff there. We will utilize that.

We again start with it = −1 case.

• if w = n, then −1 since an−1 =→

• if fin = n− 1

– if w = 0, then an−1 − 0

– otherwise, if w = n− 1 then −1
– otherwise, w < n−1 and we just have to find w smallest elements among 2·(ai−ai−1)

for i < n− 1 and add them to an−1 − 0

• otherwise, fin < n− 1

• if w = 0, then −1 since we must be able to return from an−1

• if n − 1 − fin ≥ w, then we can assign w ← to elements among fin . . . n − 2 and the
answer is (an−1 − 0) + (an−1 − afin)

• otherwise if w = n−1, then −1 since we know because of the previous point that fin ̸= 0
so we need at least one additional →

• otherwise set w = w − (n− 1− fin), since we put all bj =← for fin < j < n− 1

• now just find w smallest elements among 2 · (ai − ai−1) for i < fin

Now we assume that it ̸= −1, we have a0 < 0 and an−1 > 0

• if w = 0 or w = n, then −1

• otherwise answer is 2 · (0 − a0) plus the answer for the case it = −1 for subarray
ait+1 . . . an−1 for w = max([fin ̸= n− 1], w − it− 1)

I Security System

First let’s represent the polygon as two arrays down[i] and up[i] which describe the height
of both horizontal segments intersecting line x = i+ 0.5 (down[i] < up[i]), this will be possible
after coordinate compression. Let’s make two dp-s: dp1[i] is the smallest number of tracks
needed to cover first i columns of polygon such that the last track is horizontal and it ends in
column i. And dp2[i] is the same, except the last track is vertical and it is in the i-column.

We need four transitions, and I will do them backwards.

• horizontal — horizontal

This is the easiest one. For each i calculate how far left we can extend horizontal track
if we choose the best y-coordinate for it. We can extend it to j ⩽ i if max(down[j..i]) <
min(up[j..i]), this j can be found with binary search. So we can update dp1[i] with
min(dp1[j..i− 1]) + 1.

4

• vertical — horizontal

We need to find the smallest j such that vertical track in j-th column and horizontal
track, which ends in i together will cover everything from j-th to i-th column. For that
we need to calculate for every vertical track where is the closest uncovered vertex to the
right. One can see that this is exactly the smallest j > i where down[j − 1] > down[j] or
up[j− 1] < up[j]. This can be done with linear precalculation, you only need to maintain
smallest such index while going to the left. Then find farthest allowed vertical segment
with binary search.

Then as in previous case, update dp1[i] with min(dp2[j..i− 1]) + 1.

• horizontal — vertical

This is similar to previous one. You can do the same precalculation to the left, and then
just take dp1[j] from there

• vertical — vertical

Here for each i we need to calculate smallest j such that vertical tracks in columns j and
i will cover everything between them.

First go from i to the left while up is non-decreasing. Then go to the left while it’s
non-increasing.

As in this picture, if we want to put a vertical track in column i, here is the smallest j we
can take to cover everything between tracks, otherwise the blue star won’t be covered.

Do the same thing for down and pick maximal index. However, this is not enough, since
there is a case

Which just means that we need to make sure that max(down[j..i]) ⩽ min(up[j..i]), this
again can be easily found with binary search

Total complexity is O(n log n)

5

J Squid Game

Suppose X ⩽ Y ⩽ Z and let’s try to decrease the smallest element by half using at most
logC moves, C = 109.

Let’s first consider a case where Y divides X. Then we can assume that X = 1. Now for
each power of 2 from 20 to 2⌊log Y ⌋ if i-th bit in Y is 1, pour from Y to X. Otherwise pour from
Z to X. It’s easy to see that

1. before i-th iteration X is equal to 2i

2. if i-th bit in Y is 1, then it will become 0 after i-th iteration, making Y = 0 in the end

3. pouring from Z to X is always possible, since in the beginning Z ⩾ Y ⩾ X

Now suppose Y mod X = R. If we do the same operations as we would do in the case of

X ′ = 1, Y ′ =
⌊
Y
X

⌋
, we will end up with R in the second bucket. So let’s do that if R ⩽ X

2
.

Otherwise, let’s do operations as we would do them for X ′ = 1, Y ′ =
⌈
Y
X

⌉
. This can mean

that the last operation for i = 2⌊log Y
′⌋ is impossible. However, before this operation we actually

have 2iX water in the first bucket and 2iX −X +R in the second one. Now if instead we pour
water from the first bucket to the second one, we will get X − R water in the first bucket in
the end, which is again less than X

2
.

We spend ⌊logC⌋ operations on each iteration and after each iteration the smallest element
decreases by at least half, so there will be at most ⌊logC⌋ iterations. Thus, the total number
of operations is at most log2C < 1000

K Stock Price Prediction

Let’s calculate some hash of an array so that we can use it to check whether two sequences
are an R-match, and it is easy to maintain for a sliding window over array y.

For simplicity let’s assume for now that all numbers are distinct. Consider a sequence p.
Now build an array q such that q[i] is the index of the i-th lowest element in p. Finally build
an array t[i] = q[i]− q[i− 1], since it’s easier to maintain. Now, two sequences p and p′ are an
R-match iff their corresponding arrays t and t′ are the same.

Let’s maintain a polynomial hash of an array t for a sliding window to calculate hash of
any subsegment y[i..i+m− 1]. And let’s actually store not just t[i], but t[i] · pi, where p is the
base of our polynomial hash. When we add a new element to the sequence, we need to change
some values of t in the place where we inserted it, and multiply everything to the right by p.
Erasing element is similar. Notice that if we store t in some binary tree, we don’t need any
lazy propagation, since we are only interested in the value in the root, thus storing size of each
subtree is enough. Also, we don’t need any self-balancing trees, since we know all numbers in
advance and set + segment tree of size n is enough.

To account for equal numbers, we can order them by their positions in the array. But also
notice that in this case for sequences [1, 1] and [1, 2] resulting arrays t are the same, so instead
make an array t′[i] = (t[i], b[i]), where b[i] is a boolean meaning whether i-th and (i − 1)-th
smallest elements in p are the same or not.

Total complexity is O(n log n) with segment tree, or O(n logm) with a treap, for example

L Trio

Fix first element A of the triple and split all other numbers into groups by the subset of
positions where the digit is equal to the corresponding digit of A. Now in each of these groups

6

we can forget about positions in this subset and focus on the rest. We have the following
problem: given some digit strings with length up to 4 find the number of pairs of these strings
such that strings in one pair don’t have the same digit in any position.

This can be solved with inclusion-exclusion. The number of pairs with string s of length k is

2k−1∑
mask=0

(−1)popcount(mask) ·
∣∣∣ {strings t such that mask[i] = 1⇒ s[i] = t[i]}︸ ︷︷ ︸

D

∣∣∣
To calculate the size of set D efficiently, we can use precalculation. For each string t and

mask mask define masked string as string tmask where

tmask[i] =

{
t[i], mask[i] = 1

0, mask[i] = 0 (since statement says that there is no 0 in string t)

Now D is the number of such strings t that there exists mask m such that tm = smask. To
calculate that, iterate over all t and m and add 1 to corresponding masked string in some map
or array of size 104.

The total complexity is O(2kn2), where k = 4 is the length of a string.

7

	Ant colonies
	Double Rainbow
	Find The House
	Friendship Graphs
	Grid Triangle
	John’s Gift
	Logical Warehouse 2
	Postman
	Security System
	Squid Game
	Stock Price Prediction
	Trio

