
Problem A
Alien Integers

Photo by Gordon Dylan Johnson

Exploratory robots are essential to expanding our understanding of the
moon, Mars, and other celestial bodies. When there are two or more
robots in the same vicinity, they need to be marked by humanly read-
able integers for purposes of visual tracking. To reduce the possibility
of error in visual recognition of the robots in dark and dusty environ-
ments, numbers are chosen so that they have no digits in common.
More formally, two non-negative integers are alien to each other if
there is no digit which occurs in both of their decimal representations.
For example, 11 229 and 67 840 are alien to each other, while 2 022
and 427 are not. No integer is alien to 1 234 567 890.

The numbers on robots in the same area should also be close to each
other numerically (for instance, to simplify processing of the marks by the software, to make them easy
to remember, to distinguish them from other groups of robots marked in similar manner, . . .).

The Institute for Computerized Planetary Circumambulation needs a program to identify the nearest
number that is alien to a given number. Can you help?

Input

The input consists of an integer N (1 ≤ N ≤ 1015) given on a single line.

Output

When there is one non-negative alien integer Y closest to the input number N , output the value of Y .
When there are two such integers that are equally close to the input number N , output both of them
in ascending order, on a single line. When there is no integer alien to the input number N , output
Impossible.

Sample Input 1 Sample Output 1

24 19

Sample Input 2 Sample Output 2

605 499 711

Sample Input 3 Sample Output 3

98765432011 Impossible

ICPC North American Qualifier 2021 Problem A: Alien Integers 1

https://openclipart.org/image/400px/254731

This page is intentionally left blank.

Problem B
Avoiding Asteroids

You escaped the planet, but enemy starfighters are right behind you! To make things worse, in between
you and the safety of your base is an asteroid field. The starfighters would never follow you into the
asteroids, but unfortunately you used all your fuel in the escape, other than one small drop that will be
enough for just one final burst of the engines. You’ve got two choices. You can surrender and face a
long prison term. Or, you can aim your starship toward your base, and fire that one burst. There’s no
way to know how fast that burst will make you move, but you know it’ll eventually get you to the safety
of your base. That is, unless you collide with one of the asteroids.

You have a scan of the asteroid field, and need to determine whether you are sure to have a safe route
through the field, or if surrender is the better option. Some important notes:

• Your ship and the base are insignificant compared to the size of the asteroids, and can be treated
as points.

• Your scan of the asteroids will give the center of mass, the direction of motion (of the center of
mass), and the points on the convex hull of the asteroid (all measured at the time of the scan).

• The center of mass of each asteroid translates over time in the given direction, but at an unknown
speed. (You do know that the speed is non-negative: asteroids will not move backwards.)

• The asteroids can rotate about their center of mass, in any direction, at any angular velocity. You
don’t have any information about the tumbling of the asteroid, and must allow for any possibility.

• Asteroids do not bounce off of each other (treat asteroids as though they pass through each other
if they happen to collide).

• If you decide not to surrender, your ship will move through the asteroid field at an unknown speed:
perhaps extremely slow, or perhaps extremely fast. You have no control over your ship’s speed
and no ability to steer around asteroids.

• You may assume that no asteroid can “graze” the ship. Formally, for each asteroid either:

1. for any combination of your ship’s speed, the asteroid’s speed, and the asteroid’s angular
velocity, the distance between your ship and the asteroid will be at least 10−6 units, or

2. there exists some combination of your ship’s speed, the asteroid’s speed, and the asteroid’s
angular velocity such that your ship intersects the asteroid and the distance between your
ship and the nearest point on the surface of the asteroid is at least 10−6 units.

• No asteroid can collide with (or graze) your base: for any combination of an asteroid’s speed and
angular velocity, the distance between your base and the asteroid will be at least 10−6 units at all
times.

• Your ship starts at least distance 10−6 units away from your base.

Input

The first line of input consists of six real numbers sx, sy, sz, bx, by, bz and a single integer n, separated
by spaces. These give the 3D coordinates of your ship (sx, sy, sz), the 3D coordinates of the base
(bx, by, bz), and the number of asteroids, n (0 ≤ n ≤ 30).

ICPC North American Qualifier 2021 Problem B: Avoiding Asteroids 3

The next 2n lines describe each of the asteroids, with one asteroid per pair of lines. The first line of each
pair contains six real numbers px, py, pz, dx, dy, dz and a single integer m, separated by spaces, giving
the position (px, py, pz) and direction (dx, dy, dz) of the asteroid’s center of mass, as well as the number
of points m on the asteroid’s convex hull (4 ≤ m ≤ 8). The second line of each pair contains 3m real
numbers, giving m triples of points ci,x, ci,y, ci,z , all separated by spaces. These are the 3D coordinates
of the points on the convex hull of the asteroid, taken at the time of the scan. The asteroid center of mass
is located somewhere within the convex hull (but not necessarily at the geometric center).

All real values in the input are in the range [−2 · 106, 2 · 106] and have at most 6 digits after the
decimal point. Each asteroid’s direction is a unit vector, up to numerical tolerance, and will satisfy∣∣∣√d2x + d2y + d2z − 1

∣∣∣ ≤ 10−6.

Output

If you are guaranteed to have a safe route through the asteroid field, then print Go. Otherwise, print
Surrender.

Sample Input 1

10.0 0.0 0.0 0.0 0.0 0.0 1
5.0 3.0 0.0 0.0 -1.0 0.0 6
7.0 3.0 0.0 3.0 3.0 0.0 5.0 1.0 0.0 5.0 5.0 0.0 5.0 3.0 1.0 5.0 3.0 -1.0

Sample Output 1

Surrender

Sample Input 2

10.0 0.0 0.0 0.0 0.0 0.0 1
5.0 3.0 0.0 0.0 1.0 0.0 6
7.0 3.0 0.0 3.0 3.0 0.0 5.0 1.0 0.0 5.0 5.0 0.0 5.0 3.0 1.0 5.0 3.0 -1.0

Sample Output 2

Go

Sample Input 3

10.0 0.0 0.0 0.0 0.0 0.0 1
15.0 0.0 0.0 1.0 0.0 0.0 6
14.0 0.0 0.0 16.0 0.0 0.0 15.0 1.0 0.0 15.0 -1.0 0.0 15.0 0.0 1.0 15.0 0.0 -1.0

Sample Output 3

Go

ICPC North American Qualifier 2021 Problem B: Avoiding Asteroids 4

Problem C
Common Factors

Photo by Bob Chao

Everyone likes to share things in common with other people.

Numbers are the same way! Numbers like it when they have a factor
in common.

For example, 4 and 6 share a common factor of 2, which gives them
something to talk about.

For a given integer n, we define a function, f(n), equal to the number
of integers in the range [1, n] that share a common factor greater than
1 with n.

Furthermore, we can define a second function, g(n), which characterizes the fraction of numbers that
like a given number as follows: g(n) = f(n)

n

What we really want to know though, is, for any integer 2 ≤ k ≤ n, what is the maximum value of
g(k)?

Input

The input consists of a single integer n (2 ≤ n ≤ 1018), the value of n for the input case.

Output

For the provided test case, output the result as a fraction, in lowest terms, in the form p/q where the
greatest common divisor of p and q is 1.

Sample Input 1 Sample Output 1

10 2/3

Sample Input 2 Sample Output 2

100 11/15

ICPC North American Qualifier 2021 Problem C: Common Factors 5

https://https://www.k5learning.com/sites/all/files/factoring.jpg

This page is intentionally left blank.

Problem D
Dimensional Analysis

You are deriving some equations for physics homework and are worried you’ve made some mistakes. To
debug them, you will apply dimensional analysis. In dimensional analysis, you remove all magnitudes
and units from a set of equations until you are left only with strings representing physical quantities and
the special dimensionless constant 1. The following is an example set of such equations:

velocity * time = length
frequency = 1 / time
acceleration = velocity / time
force = mass * acceleration
force = mass * length / time / time

Your equations, like the ones above, involve only multiplication and division (no addition, exponenti-
ation, etc.) As you can see, some quantities (like velocity) are defined in terms of other, more basic
quantities (length, time). But you’re not sure what the correct relationships are between the quantities.
You do know that none of the quantities in your equations are unitless: it should not be possible, through
any set of algebraic manipulations, to prove that any quantity is equal to the dimensionless constant 1.
(You may assume that all physical quantities in your equations have positive real magnitudes. In partic-
ular, you may freely divide any equation by any quantity without worrying about division by zero; and
you may take square or higher roots of any quantity.)

A set of equations violating this condition is invalid (and a set of equations is valid otherwise). The
above example is a valid system. Here is an invalid one:

foo * bar = xyzzy
foo = xyzzy * bar

By substituting the second equation into the first, and dividing both sides by xyzzy, you get bar * bar = 1.
Taking a square root of both sides, you get bar = 1 and so bar is dimensionless.

Given the set of equations in your dimensional analysis, compute whether the equations are valid.

Input

The first line of the input is a single integer N , the number of equations (1 ≤ N ≤ 100). Each of the
N subsequent lines of input contains one equation. An equation consists of two expressions, separated
by an equal sign surrounded by spaces “ = ”. Each expression contains one or more atoms, separated
by either “ * ” or “ / ”; each atom is either the character ‘1’ or a physical quantity, represented by a
lowercase string (containing one or more ASCII characters between ‘a’ and ‘z’). At most 100 unique
physical quantities appear in total across all equations, each equation contains at most 100 atoms, and
the total number of characters in all atoms across all equations will not exceed 100 000.

There will be exactly one space before and after each ‘=’, ‘*’, and ‘/’ and the equations will contain no
other whitespace or other extraneous punctuation. See the sample input for examples of how equations
are formatted.

The operator * represents multiplication and / represents division. Expressions follow the usual asso-
ciativity rules: a / b * c is the same as a * c / b but different from a / b / c.

ICPC North American Qualifier 2021 Problem D: Dimensional Analysis 7

Output

Print invalid if it is possible to prove that at least one of the physical quantities in an equation in the
input must be dimensionless. Print valid otherwise.

Sample Input 1 Sample Output 1

5
velocity * time = length
frequency = 1 / time
acceleration = velocity / time
force = mass * acceleration
force = mass * length / time / time

valid

Sample Input 2 Sample Output 2

2
foo * bar = xyzzy
foo = xyzzy * bar

invalid

Sample Input 3 Sample Output 3

5
time * power = energy
energy = work
work = force * distance
distance = distance
1 / 1 = 1 * 1 / 1

valid

ICPC North American Qualifier 2021 Problem D: Dimensional Analysis 8

Problem E
Eye of Sauron

Photo by Usuario Mararie

Little Elrond is obsessed with the Lord of the Rings series. Between
lectures he likes to doodle the central tower of the great fortress Barad-
dûr in the margins of his notebook. Afterward, he always double
checks his drawings to ensure they are accurate: with the Eye of
Sauron located in the very center of the tower. If any are incorrect,
he makes sure to fix them.

You are to write a program that reads a representation of his tower, and
ensures that the drawing is correct, with a properly centered eye.

Input

Input consists of a single string of length n, where 4 ≤ n ≤ 100.
Input strings will consist only of three types of characters: vertical
bars, open parentheses, and closing parentheses. Input strings contain
one or more vertical bars followed by a set of matching parentheses
(the “eye”), followed by one or more vertical bars. For a drawing to be
“correct”, the number of vertical bars on either side of the “eye” must
match. Input will always contain a pair of correctly matched parentheses, with no characters between
them. No other characters will appear in the string.

Output

On a single line print the word “correct” if the drawing is accurate or the word “fix” if there is an error
that needs addressing.

Sample Input 1 Sample Output 1

|()|| fix

Sample Input 2 Sample Output 2

||||()|||| correct

Sample Input 3 Sample Output 3

|()| correct

Sample Input 4 Sample Output 4

|||()| fix

ICPC North American Qualifier 2021 Problem E: Eye of Sauron 9

https://commons.wikimedia.org/wiki/File:Bee-wax_candle_pretends_to_be_Barad-d%C3%BBr.jpg

This page is intentionally left blank.

Problem F
ilove Strings

It’s that time of year when love is in the air. You’re no stranger to love. You are obsessed with strings but
not just any strings. You love “ilove” Strings. An “ilove” String is a string of length 5 with the following
properties:

• Alternates between vowels (excluding ‘y’ and ‘Y’) and consonants (including ‘y’ and ‘Y’)

• Begins with a vowel (excluding ‘y’ and ‘Y’)

• Consists of 5 pairwise distinct characters (distinguishing between upper and lower case)

Examples of “ilove” Strings includes “ilove”, “image”, “IxoXO”, and “abide”. Examples of non-
“ilove” Strings include , “ideas”, “maker”, “inane”, “oxOXo” and “abides”.

The loveliness of a string is the number of subsequences of the string that form an “ilove” String.
Although “ilooove” is not an “ilove” String, it does have a loveliness of 3.

Input

Input contains a single string of between 1 and 100 000 lowercase and uppercase Latin characters, rep-
resenting the string whose loveliness is to be computed.

Output

For the provided string, print one line with a single integer L — the loveliness of the string modulo
109 + 7.

Sample Input 1 Sample Output 1

ilovestrings 4

Sample Input 2 Sample Output 2

idont 0

Sample Input 3 Sample Output 3

CAPital 1

ICPC North American Qualifier 2021 Problem F: ilove Strings 11

This page is intentionally left blank.

Problem G
MrCodeFormatGrader

Instructor Bob is building an automatic source code formatting grading website. The name of the web-
site is “MrCodeFormatGrader”. When you run Bob’s program and submit your source code to it, the
program will output C, the number of lines of source code; N , the number of source code lines that have
format errors; and a list of line numbers that are not properly formatted. The line numbers are separated
by spaces and in increasing order.

So for a 100-line program, with 10 errors occurring on lines 2, 3, 5, 10, 11, 12, 25, 26, 88, and 89, the
original program might output this:

100 10
2 3 5 10 11 12 25 26 88 89

However, the people that used this program said that this output is not very readable. Your job is to read
the output above and show two lists: a compressed list of errors and another compressed list of correct
lines.

Input

Input consists of two lines. The first line contains two integers: C, the number of lines of source code
in the program being checked, where 2 ≤ C ≤ 100 000; and N , the number of source code lines
containing format errors, where 1 ≤ N ≤ min(C, 1 000). The second line of input will contain N
values, identifying the line numbers of source code lines with format errors. These values are positive
integers less than or equal to C and are listed in strictly increasing order.

Output

Output consists of two lines. The first line should start with the string: “Errors:”, followed by
a space, followed by a list of lines with errors. The second line of output should start with the string:
“Correct:”, followed by a space, followed by a list of lines without errors. For both lists, a contiguous
set of line numbers should be represented by listing the first and last line, separated by a hyphen (‘-’). In
lists with two or more items, items should be separated by a comma and space except for the last value
(or last range of contiguous values) of each list, which should be separated with an “and” instead of a
comma and space. See the sample output. Note: every program will have at least one error and at least
1 correct line.

Sample Input 1

100 10
2 3 5 10 11 12 25 26 88 89

Sample Output 1

Errors: 2-3, 5, 10-12, 25-26 and 88-89
Correct: 1, 4, 6-9, 13-24, 27-87 and 90-100

ICPC North American Qualifier 2021 Problem G: MrCodeFormatGrader 13

Sample Input 2

40 18
1 3 4 6 7 8 9 12 13 14 20 25 26 27 28 30 38 40

Sample Output 2

Errors: 1, 3-4, 6-9, 12-14, 20, 25-28, 30, 38 and 40
Correct: 2, 5, 10-11, 15-19, 21-24, 29, 31-37 and 39

ICPC North American Qualifier 2021 Problem G: MrCodeFormatGrader 14

Problem H
Mult!

Photo by Larisa Lofitskaya

Nora Mainder has a game she plays with her students to help them
learn multiplication. She calls out a sequence of numbers and the stu-
dents have to determine when she names a whole number multiple of
the first number. When a student recognizes such a multiple, he or
she must call out “Mult!”, ending this round of the game. Then a new
round begins with a new initial number. Fortunately her students are
very bright and never fail to recognize a multiple, so they all cry out at
once—a “multitude” of shouts.

For instance, if she calls out “8, 3, 12, 6, 24,” her students all yell “Mult!” when she reaches 24 because
it is a multiple of the first number, 8. If she begins a second round of the game with the sequence “14,
12, 9, 70,” the class will call out “Mult!” when she reaches 70, a multiple of the first number, 14.

Given a sequence of numbers called out by Nora during several rounds of the game, identify which
numbers ought to produce a shout of “Mult!”

Input

The first line of input contains an integer n, 2 ≤ n ≤ 1 000, the length of the number sequence. The
following n lines contains the sequence, one number per line. All numbers in the sequence are positive
integers less than or equal to 100. The sequence is guaranteed to contain at least one complete round of
the game (but may end with an incomplete round).

Output

Print all of the sequence elements that will cause the class to shout “Mult!” Each value should be printed
on a separate line.

Sample Input 1 Sample Output 1

10
8
3
12
6
24
14
12
9
70
5

24
70

ICPC North American Qualifier 2021 Problem H: Mult! 15

https://www.dreamstime.com/multiplication-table-stock-photography-image-free-5076952

Sample Input 2 Sample Output 2

5
3
3
2
5
7

3

ICPC North American Qualifier 2021 Problem H: Mult! 16

Problem I
Pizza Party!

Photo by Bob Chao

You are co-organizing a computer science conference, and you are in
charge of a pizza party for the conference guests. Each guest holds
preferences over combinations of toppings, and guests are seated in
groups by table in the conference center ballroom. One pizza is served
to each table. You must make sense of each table’s collective prefer-
ences by finding pizza toppings that make all guests happy at a particu-
lar table. Since you are paying by the topping, the conference organiz-
ers wish to find the minimal set of satisfying toppings for each table’s
pizza.

Pizza preferences are specified as statements in either an absolute or
implicative form. An absolute preference for pepperoni is a state-
ment that pepperoni must be on the pizza in order to satisfy a par-
ticular guest. An implicative preference is a conditional statement. For example, the preference
if pepperoni and sausage then mushroom indicates that a pizza with both pepperoni and
sausage must also have mushrooms. Note that the implicative preference says nothing about a preference
for mushrooms when either pepperoni or sausage are absent from the pizza.

Guests are already organized by table and each table’s preferences are aggregated. It is your job to find
a topping assignment for the pizza at each table.

Input

The first line of input consists of a single integer c (1 ≤ c ≤ 1 000), the number of preferences for the
pizza you are trying to create. This is followed by c lines containing either an absolute or implicative
preference.

The name of each topping is a single word, not exceeding 10 characters in length, consisting of only
lowercase English letters. The words if, and, or, and then are not valid names for pizza toppings.

Absolute preferences consist of a single topping name. All implicative preferences are either of the form
if t1 and t2 and . . . and tk then tk+1, or if t1 or t2 or . . . or tk then tk+1, where each of
t1, t2, . . . , tk+1 are topping names and 1 ≤ k ≤ 500.

Output

For the provided test case, print one line with a single integer t — the minimal number of toppings for a
pizza that satisfies all guests at the table.

ICPC North American Qualifier 2021 Problem I: Pizza Party! 17

https://commons.wikimedia.org/wiki/File:Ubuntu_10.10_Countdown_Party_at_Taipei_101_BobChao_3.jpg

Sample Input 1 Sample Output 1

4
peppers
if spinach and olives then tomatoes
spinach
feta

3

Sample Input 2 Sample Output 2

5
pepperoni
pineapple
if pepperoni and sausage then mushroom
ham
if pineapple and ham then bacon

4

Sample Input 3 Sample Output 3

4
pepperoni
sausage
if pepperoni and sausage then mushrooms
if mushrooms or peppers then cheese

4

ICPC North American Qualifier 2021 Problem I: Pizza Party! 18

Problem J
Stacking Up

Jack and Jason’s Pancakes, CC BY-SA 4.0, via Wikimedia Commons

Stacy has recently started work at Stacks“R”Us, a leading
manufacturer of stack-related products such as children’s
blocks, pancake spatulas, and dining hall tray dispensers. As
a brand new employee, she has been tasked with testing the
latest product in Stacks“R”Us’s line of automated electronic
stack machines, the Stackulator 3000.

The Stackulator 3000 holds a single stack of positive inte-
gers in its memory, and supports three instructions, 1, d,
and +. The first two instructions are fairly standard:

• 1: push the number 1 onto the top of the stack.

• d: duplicate the number on top of the stack, that is, take the number currently on top of the stack
and push another copy of it on top. It is an error to execute the d instruction on an empty stack.

Unfortunately, due partly to miscommunication between the designer and the hardware team, and partly
to confusion about the difference between a stack pointer and a stack entry, the + instruction ended up
being a little wonky:

• +: pop the top two numbers from the stack, decrement all remaining stack entries by one, then
add the two popped elements and push the result onto the stack. It is an error to execute the +
instruction on a stack containing fewer than two integers.

For example, executing the program 1d+11+ produces the sequence of stack states illustrated in Fig-
ure J.1, ultimately resulting in a stack containing two entries, 1 on the bottom and 2 on the top.

Figure J.1: Execution of 1d+11+

If a stack entry of 1 is decremented during an addition operation, it is simply removed from the stack,
since the stack can only hold positive integers.

Since she is still an apprentice stack tester, Stacy was assigned to work with Stan, a more experienced
tester. Stan proposes that they split the work evenly: Stan will come up with stacks, and it will then be
Stacy’s job to create Stackulator 3000 programs which should generate the given stacks. They can then
run Stacy’s programs to ensure the Stackulator 3000 gives the expected results.

Stacy could do this, but she is now too busy looking for a different job. That’s where you come in: please
help Stacy by creating Stackulator 3000 programs that can generate the stacks given by Stan.

ICPC North American Qualifier 2021 Problem J: Stacking Up 19

https://commons.wikimedia.org/wiki/File:OriginalPancakes.jpeg
https://creativecommons.org/licenses/by-sa/4.0

Input

The first line of input consists of an integer 1 ≤ n ≤ 1 000. The following line contains n space-
separated positive integers, indicating the desired contents of the stack from bottom to top. Each integer
x will be in the range 1 ≤ x ≤ 106.

Output

Output a single line containing a valid Stackulator 3000 program, which, when executed beginning with
an empty stack, results in a stack holding the desired contents. Your program must consist of only the
characters 1, d, and + and be no more than 100 000 characters in length. If there is more than one valid
program which results in the desired stack, you may output any of them.

Sample Input 1 Sample Output 1

3
1 1 1

1dd

Sample Input 2 Sample Output 2

3
1 2 3

11+1+1+1+1+11+1+1+11+1+

ICPC North American Qualifier 2021 Problem J: Stacking Up 20

Problem K
Stamp Combinations

Photo by John Keyser

You’re on your way to pick up a package from the store, wrap it, and
mail it. You want to bring a certain number of stamps to mail it, and
you have a long roll of stamps that you can use. Now, over time, you’ve
occasionally pulled off a stamp from somewhere in the middle of the
roll, and now you’re left with a strip where stamps are clustered in
groups, separated by empty spaces.

Being practical, you don’t want to tear individual stamps, and so you’ll
only tear the roll in between the clusters of stamps. And, you don’t
want to be left with multiple rolls of stamps, so you can only pull these groups off of the beginning or
end of the roll. Is it possible to do this with the roll of stamps you have?

Input

The first line of input consists of two integers, m and n, 1 ≤ m,n ≤ 106, 1 ≤ m · n ≤ 107, giving the
number of clusters of stamps and the number of queries you will have.

The second line contains m integers, ai, 1 ≤ ai ≤ 100, separated by spaces. These give the number of
stamps in each cluster, in order from the beginning to the end of the roll.

The next n lines each contain one integer, q, 0 ≤ q ≤ 108, giving a query, where a query is the number
of stamps needed to mail a package.

Output

For each query, output one line containing “Yes” if it is possible to bring that number of stamps, or
‘No” if it is not possible to bring that number of stamps.

Explanation of Sample

The roll contains 5 clusters of stamps.

A group of 2 stamps can be taken by tearing just the first cluster of stamps off of the roll.

A group of 10 stamps can be taken by tearing the first two clusters of stamps off of the roll.

A group of 5 stamps can be taken by tearing the first cluster (of 2) and the last cluster (of 3) off of the
roll.

A group of 17 stamps can be taken by taking the entire roll.

It is not possible to take just 1 stamp, since tearing the roll to take the single stamp in the middle of the
roll would not leave you with a single roll of stamps, and it is not possible to tear in the middle of a
cluster.

ICPC North American Qualifier 2021 Problem K: Stamp Combinations 21

Sample Input 1 Sample Output 1

5 5
2 8 1 3 3
2
10
5
17
1

Yes
Yes
Yes
Yes
No

ICPC North American Qualifier 2021 Problem K: Stamp Combinations 22

Problem L
Sword Counting

Michael is planning to open a graph store. A graph store is a type of store
which specializes in selling various graphs in different sizes and shapes.
Michael has done extensive research on the market and the business seems
very profitable. He has also invented a graph generator device which is able
to produce any graph that he wants.

However, there is one small problem which is keeping him from starting
the next booming business: Michael does not know how each graph should
be priced. After weeks of reading, he found that a graph’s value can be
calculated based on the number of its sword subtrees. A group of six distinct
vertices (let’s represent them with letters A to F) form a sword subtree if the
following edges exist between them (see figure):

• A is connected to B.

• B is connected to A and D.

• C is connected to D.

• D is connected to B, C, E, and F.

• E is connected to D.

• F is connected to D.

Two sword subtrees T1 and T2 are considered to be different if there is any edge e which exists in T1 but
does not exist in T2.

As a highly knowledgeable person and his business partner, your task is to help Michael count the
number of sword subtrees in his generated graphs. Given an undirected graph, write a program to count
the number of its sword subtrees.

Input

The first line of input will contain two integers N and M , (1 ≤ N,M ≤ 100 000), representing the
number of vertices and edges in the graph. The next M lines each will contain two integers ui and vi
(1 ≤ ui, vi ≤ N), the endpoints of an undirected edge. It is guaranteed that the graph described by these
edges does not contain multiple edges or self loops.

Output

Output a single integer, the number of sword subtrees in the given graph.

ICPC North American Qualifier 2021 Problem L: Sword Counting 23

Sample Input 1 Sample Output 1

8 7
1 2
1 3
4 1
1 5
5 6
5 7
8 5

6

Sample Input 2 Sample Output 2

6 15
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6

120

ICPC North American Qualifier 2021 Problem L: Sword Counting 24

Problem M
Tic-Tac State

Photo by Symode09

Congratulations! You are starting your internship for the famous dig-
ital archaeologist, Endiana Jones. You have been assigned to evaluate
the results of saved games of a 1980’s version of Tic-Tac-Toe. In those
days, programmers had very little storage, so they saved game state as
compactly as possible. In this case, the state was in a 32-bit register.
Bits 0 − 8 stored the positions that had been played and bits 9 − 17
indicated an X or O. A set bit (1 bit) indicated a played position for
bits 0 − 8 or that X played for bits 9 − 17. Bit 18 indicated the next
player to play. (Bits are numbered from right to left, starting at the
least-significant bit.) If bit 18 is set (is 1), it is X’s turn to play next.
Visually the bits were laid out as shown in Figure M.1:

Figure M.1: Bits in a game state

The game represented by the picture would have bits 0 − 8 set because all positions have been played.
Bits 10, 11, 12, and 15 would be set because those positions contain an X. Bit 18 would be set because
it would be X’s turn next. The state would be represented in binary as: 1 001 001 110 111 111
111 or in octal as 01116777.

The Tic-Tac-Toe implementation was very simple, and a cat’s game (draw or tie) was not called until all
positions had been played. Your task is to interpret the state of the game given an octal integer.

Quick review of Tic-Tac-Toe: Two players play the game. Either player may go first. One player’s
mark is X and the other’s is O. Each player takes turns placing their mark in one of the empty squares. If
a player gets three marks in a horizontal, vertical, or diagonal row, that player wins. If there is no winner
and there are no empty spaces left, the game stops, and the game is declared “Cat’s” game.

Input

The first line of input consists of a single decimal integer c (1 ≤ c ≤ 10 000), the number of states to
evaluate. Each of the following c lines will have a single octal number representing the state of a game.
All numbers will follow the convention of writing octal numbers with a leading 0. All game states will
be legal, that is, achievable in a real game of Tic-Tac-Toe.

ICPC North American Qualifier 2021 Problem M: Tic-Tac State 25

https://commons.wikimedia.org/wiki/File:Tic_tac_toe.svg

Output

For each game state number print a single line indicating the state of the game. The four possible output
lines are:

X wins
O wins
Cat’s
In progress

Sample Input 1 Sample Output 1

4
01116777
07037
01416777
050055

O wins
X wins
Cat’s
In progress

ICPC North American Qualifier 2021 Problem M: Tic-Tac State 26

Problem N
Venn Intervals

A Venn interval diagram is a graphical way to illustrate intersections of sets in 1D, similar to the more
familiar Venn diagrams in 2D. A Venn interval diagram is defined by assigning a non-zero-length integer
interval [li, ui) to each set Si. The regions where different intervals overlap correspond to intersections
of different combinations of the sets (see Figure N.1).

Figure N.1: Venn interval diagram corresponding to Sample Input 1. The intervals as-
signed to each of the six sets A through F are shown at the top; the regions encoded
by the diagram are labeled along the number line. This Venn interval diagram has nine
regions, and is not degenerate (since no interval is contained in any other.)

More formally, given the interval assigned to each set, you can compute the regions that appear in the
Venn interval diagram with the following algorithm:

• Combine together all of the interval starting points li and ending points ui into a single set, and
sort them to get an integer sequence p1 < p2 < · · · < pm.

• Label each interval (pj , pj+1) spanning consecutive p values with all the sets Si for which (pj , pj+1)
is contained within [li, ui). (Note that partial overlaps are not possible: the p-interval is either con-
tained within, or disjoint from, each set-interval).

• The set of all non-empty labels are the regions of the Venn interval diagram. Each label {Sa, Sb, . . .}
represents an intersection of sets Sa ∩ Sb ∩ · · · .

In the example Venn interval diagram shown above, there are six sets (A through F) and nine regions
(B, A ∩ B, A, A ∩ C, A ∩ C ∩ D, C ∩ D, D, E, and F). This example Venn interval diagram has a
“hole” where no sets overlap (between the end of region D and the start of E); this is allowed. Note also
that E ∩ F is not a region: E and F ’s intervals touch at their endpoints, but the two do not overlap on a
p-interval.

Not every list of regions has a corresponding illustration as a Venn interval diagram. Consider for
example the regions A ∩ B, B ∩ C, and C ∩ A. There is no way to lay out intervals for A, B, and C
on the real line to form exactly these three regions (any Venn interval diagram that includes these three
regions must also include A∩B ∩C). In addition, a Venn interval diagram is degenerate if any interval
is contained within another interval: if li ≤ lj and uj ≤ ui for some i 6= j. For example, if C’s right
endpoint were at 4 instead of 5, the Venn interval diagram in Figure N.1 would become degenerate, since
the interval assigned to the set C would then be contained within A’s interval (corresponding to Sample
Input 3).

Given a list of regions, construct a non-degenerate Venn interval diagram containing exactly those
regions, if possible.

ICPC North American Qualifier 2021 Problem N: Venn Intervals 27

Input

The first line of the input contains a single integer n, the number of regions required in your diagram
(1 ≤ n ≤ 4 000). The next n lines each describe one region. Each line begins with an integer k, the
number of sets that intersect to form the region (1 ≤ k ≤ 2 000), followed by k space-separated set
names. Each set name contains only lowercase or uppercase letters (a-z, A-Z) and no set name is longer
than ten characters. All set names listed on the same line are distinct, and no two regions list the exact
same collection of set names. No more than 2 000 unique set names appear in total across all regions.

Output

If a non-degenerate Venn interval diagram does not exist whose regions match the input, print IMPOSSIBLE
and produce no further output.

Otherwise, print the intervals describing any one valid diagram. For each set name that appears in the
input, print a line of output starting with that set name, followed by two space-separated integers l and
r: the left and right endpoints of the interval assigned to that set name in your diagram. The endpoints
must satisfy −106 ≤ l < u ≤ 106. You may list the sets in any order, but every set name that appears in
the input must correspond to exactly one line of output.

Every region in the input must appear at least once in your Venn interval diagram, and your diagram must
not contain any regions other than those specified in the input. You diagram must not be degenerate: no
interval should be enclosed inside another.

Sample Input 1 Sample Output 1

9
1 A
2 A B
1 B
2 A C
3 A C D
2 C D
1 D
1 E
1 F

B -1 1
A 0 4
C 2 5
D 3 6
E 7 8
F 8 9

Sample Input 2 Sample Output 2

3
2 A B
2 B C
2 C A

IMPOSSIBLE

ICPC North American Qualifier 2021 Problem N: Venn Intervals 28

Sample Input 3 Sample Output 3

8
1 A
2 A B
1 B
2 A C
3 A C D
1 D
1 E
1 F

IMPOSSIBLE

ICPC North American Qualifier 2021 Problem N: Venn Intervals 29

This page is intentionally left blank.

