2021 North American Qualifier

Solution Outlines
(ordered by time of first correct solution)

The Judges

Jan 22, 2022

NAQ 2021 Solution Outlines 1/47

Eye of Sauron — First solved at 0:01

@ Given a string containing the substring “ ()" and a number of vertical
bars, determine whether the “ ()" is centered

@ Process input one character at a time, counting bars until “()" is
encountered

@ Begin counting bars again to verify that the number of bars after the
parentheses agrees with the count of bars before them

@ (In Python, just split on “()" and then compare the lengths of the
arrays)

Problem Authors: Kate Ericson and Josh Guerin NAQ 2021 Solution Outlines 2 /47

Mult! — First solved at 0:02

@ Given: a sequence of positive integers representing one or more rounds
of the game “Mult!”

@ Each round begins with a target integer t and ends with the next
multiple m of t that appears in the sequence

@ Print all values of m

@ Set start-flag to “true”

@ Loop through input:

e When start-flag is true, save input to target, reset start-flag to false
e When start-flag is false and input is a multiple of target, print input,
set start-flag back to true

Problem Author: Bob Roos NAQ 2021 Solution Outlines 3/47

Common Factors — First solved at 0:07

@ Define a function g(n) to be the fraction of integers in the range [1, n]
which share a common factor (greater than 1), with n.

@ For example, g(6) = 2/3, since the integers 2, 3, 4 and 6 all share a
common factor greater than 1 with 6, and this makes up two-thirds of
all the integers in the range [1,6].

e Given n, calculate the maximum value of g(k), where k < n.

Problem Author: Arup Guha NAQ 2021 Solution Outlines 4/47

Common Factors — First solved at 0:07

Brute Force Solution

@ For each integer j less than k, see if ged(j, k) > 1; if so, add 1 to a
counter.

e Calculate the corresponding fraction and reduce to lowest terms. Do
this for all values of k up to the upper bound n.

@ Problem: Even for a single value of k, let alone all of them, this is too
slow, since the run time of gcd is O(lg n), so for a single value of k,
O(k g k) time would be spent determining the desired fraction.

Problem Author: Arup Guha NAQ 2021 Solution Outlines 5/47

Common Factors — First solved at 0:07

Key Observation

e Euler's Phi function, ¢(n), represents the opposite of what is being
asked. It represents the number of integers in the range [1, n] that
share no common factors with n. Thus, it follows that
g(n) = (n—¢(n))/n.

@ We must minimize ¢(n)/n to maximize g(n).

Problem Author: Arup Guha NAQ 2021 Solution Outlines 6 /47

Common Factors — First solved at 0:07

Calculating ¢(n)

o Well known formula for ¢(n), based on prime factorization. For each
prime term p¥ in the prime factorization of n, we place the term
(p* — p*=1) = p¥(1 — 1/p) as part of the product for ¢(n).
o For example, ¢(23-32.51) =23(1 —1/2)-3%(1 - 1/3)-5'(1 - 1/5)
o Gathering all of the terms of the form p¥ together, we see that

¢(n) =n(1—1/p1)(1 —1/p2)---(1 —1/pm), where p1, p2, ..., pm,
are the distinct prime factors of n.

@ Taking this expression and dividing by n yields
(1—-1/p1)(1—1/p2)--- (1 —1/pm)

Problem Author: Arup Guha NAQ 2021 Solution Outlines 7/47

Common Factors — First solved at 0:07

Putting It All Together

@ To minimize the expression, we want each distinct prime to be as
small as possible, so greedily choose primes in order from smallest to
largest and start multiplying them together to form our meaningful
values of n.

@ Example: 2-3-5 =30, and
(1-1/2)(1—-1/3)(1 —1/5) =8/30 = 4/15. It follows that n =30 is
the smallest number for which g(n) = 11/15, and this fraction is
larger than g(n) for all values of n < 30.

@ For a given value of n, keep on multiplying primes in order, stopping
before you get a product bigger than n.

@ Then calculate the corresponding value of g(n) and reduce it (via
Euclid's Algorithm) to lowest terms.

Problem Author: Arup Guha NAQ 2021 Solution Outlines 8 /47

Stamp Combinations — First solved at 0:07

Problem

Given an array of numbers, determine whether the sum over a subarray
from the beginning plus a subarray from the end match a query value q.

Problem Author: John Keyser NAQ 2021 Solution Outlines 9/47

Stamp Combinations — First solved at 0:07

Read in the sequence to an array A, and compute a prefix sum. Store these
either in a hash map or in an array B (which is ordered and can be binary
searched).

For a query value g, check each suffix sum, s <= g to see if g — s was a
prefix sum.

Problem Author: John Keyser NAQ 2021 Solution Outlines 10 /47

Stamp Combinations — First solved at 0:07

Solution 2
If the sum of all elements in the array is T, then if our query is g, we want
to find whether some subarray sums to T — g
We can use the traditional sliding window technique to find whether such a
subarray exists.
@ Set the initial start and end index of the window before the first
element, with the sum at 0

@ If the sum of the window is less than the target, increase the end index
(and add that new value to the sum)
@ If the sum of the window is greater than the target, increase the start
index (and subtract that value from the sum)
@ Continue until either a sum is matched, or you try to extend beyond
the end of the array.
A variation on the sliding window technique can also be used to find the
beginning and ending of the array summing to g, directly.

Problem Author: John Keyser NAQ 2021 Solution Outlines 11 /47

Stamp Combinations — First solved at 0:07

Warnings and Pitfalls

o Efficient implementation of the problem is important. Inefficient
searching, indexing, or extraneous comparisons can yield time limit
exceeded.

o Likewise, buffering output to prevent multiple writes may yield faster
runtimes.

@ Handle the edge case of 0 stamps needed

@ Be sure not to pass when there are more stamps requested than are on
the roll.

Problem Author: John Keyser NAQ 2021 Solution Outlines 12 /47

Tic-Tac State— First solved at 0:09

Problem

Given a tic-tac-toe state represented as bits, figure out the state of the
game. Bits 0-8 are positions that have been played. 9-17 are positions
played by X. 18 indicates who plays next.

Observations
© There 8 winning patterns: 3 rows, 3 columns, two diagonals. These
patterns correspond to these winning bitmasks in binary:
0b111000000, 0b000111000, 0b000000111, 0b100100100,
0b010010010, 0b001001001, 0b100010001, 0b001010100

@ |If noone has won, it's a Cat's game if all of the played bits are set:
0777 (octal)

Problem Author: Ben Reed NAQ 2021 Solution Outlines 13 /47

Tic-Tac State— First solved at 0:09

© The bit indicating the next player is a distractor. Ignore it.

@ positions played by X (xplay) is state >> 0.

@ positions played by O (oplay) is ~ (state >> 9)&state.

© X won if for any winning bitmask (wmask) xplay&wmask == wmask.
@ O won if for any winning bitmask (wmask) oplay&wmask == wmask.
O Cat's if state&0777 == 0777.

@ If no winner and not Cat's, the game is in progress.

Problem Author: Ben Reed NAQ 2021 Solution Outlines 14 / 47

MrCodeFormatGrader — First solved at 0:10

@ Given an ordered set of line numbers between 1 and N, output a
compressed list of this set of numbers and a compressed list of its
complement

o Create an array of “start/stop” pairs, one pair for each segment of
consecutive line numbers in the input

@ Form an output string of either single line numbers (start == stop) or
hyphen-separated pairs, separated by commas and spaces

@ Replace the last comma with “and” and print error list

@ Repeat the process with the complement of the input set to get the
compressed list of correct lines

Problem Author: Bob Bradley NAQ 2021 Solution Outlines 15 /47

Pizza Party! — First solved at 0:18

Problem

@ Given a set of logical constraints on pizza toppings, determine the size
of a minimal set of toppings that satisfies the constraints

Problem Authors: Kate Ericson and Josh Guerin NAQ 2021 Solution Outlines

Pizza Party! — First solved at 0:18

@ Divide input into three categories: absolute, and-conditional,
or-conditional

@ For every implicative, save the chain of antecedents as well as the
consequent (storing as a tuple helps). Using a set for the antecedents
simplifies any repetition.

@ Loop over the absolute topping list. While you still have any
and-conditionals or or-conditionals left, check their antecedents for the
absolute topping you're looking at. Remove it from the set if it exists.

@ When a set of “and” antecedents empties out, add the consequent to
the back of the absolute list.

@ When any member of a set of “or’ antecedents is found, add the
consequent to the back of the absolute list.

@ Once you're done checking, removes any duplicates from the absolute
list and return the size of the resulting set

Problem Authors: Kate Ericson and Josh Guerin NAQ 2021 Solution Outlines 17 / 47

Alien Numbers — First solved at 0:19

Problem

Given integer X, find the closest alien integer to X, i.e. an integer which
does not share any digit with X. All values are expressed in decimal
notation.

Notation
@ Denote by LD the leading digit of X and by N the length of X.
@ Denote by DNUX the set of digits not used in decimal representation
of X.
@ Denote by minDNUX and by maxDNUX the smallest and the biggest
digit in DNUX, respectively.

Problem Author: Marko Genyk-Berezovskyj NAQ 2021 Solution Outlines

Alien Numbers — First solved at 0:19

Case digit 0 in X

Case 1. Digit 0 is not in DNUX:

@ The closest bigger alien number to X: If there is a digit in DNUX
bigger than LD, output the smallest digit in DNUX bigger than LD,
followed by N — 1 copies of minDNUX. Otherwise output N + 1
copies of minDNUX.

@ The closest smaller alien number to X: If there is a digit in DNUX
smaller than LD, output the biggest digit in DNUX smaller than LD,
followed by N — 1 copies of maxDNUX. Otherwise output N — 1
copies of maxDNUX.

Problem Author: Marko Genyk-Berezovskyj NAQ 2021 Solution Outlines 19 /47

Alien Numbers — First solved at 0:19

Case digit 0 not in X

Case 2. Digit 0 is in DNUX:
@ 0 cannot be the leading digit in the result, except for single integer 0.
e 0is minDNUX, it may be also maxDNUX.

@ Adjust the rules in Case 1. Instead of minDNUX, use the next
smallest digit in DNUX, where appropriate.

v
No solution

If above rules fail to produce decimal representation of an integer, the
corresponding closest alien number does not exist.

Problem Author: Marko Genyk-Berezovskyj NAQ 2021 Solution Outlines 20 /47

Stacking Up — First solved at 0:27

Problem

A stack has three operations:
@ Push 1 onto the stack
@ Duplicate the top element
@ Add the two top elements, and decrement by 1 all other elements.

Given a desired stack of numbers, devise a set of stack instructions to

create that stack, starting with an empty stack. The list of instructions
must not be “too long.”

Problem Author: Brent Yorgey NAQ 2021 Solution Outlines 21 /47

Stacking Up — First solved at 0:27

@ Use a simple recursion to find instructions to build a single number on
the stack. If s(n) is a set of instructions to generate n, then:
o s(1) ="1"
o s(n) =s(n/2) + “d+" if nis even
o s(n) =s("52) + “d+1+" if n is odd

@ For each desired number n on the stack, find instructions to build
n + k where k is the number of “+" operations needed to build all the
numbers above it on the stack. (This is easiest if you find these
instructions for the numbers in top-down order.)

@ Then concatenate these instructions. Since the length of s(n) is
O©(log n), the total size of the instructions fits within the given length
bound.

Problem Author: Brent Yorgey NAQ 2021 Solution Outlines 22 /47

Sword Counting — First solved at 0:48

Problem
o Given: An undirected graph G(V, E) with 1 <|V/|, |E| < 10°
@ Count the number of sword subtrees

@ A set of 6 distinct vertices {v1, v, v3, va, v5, v} form a sword subtree
if:

{vi,v2,v3,v4,v5,v6} € V and {viva, vav3, vavy, Vovs, sV} € E

@ Two sword subtrees are different if they differ in at least one edge

Naive Solution

@ Try all possible combinations selecting 6 vertices.

o This solution will run in O(N®) which can not pass the time limit.

@ The size of the graph enforces a sub-quadratic solution.

Problem Author: Mohammadreza Mohseni NAQ 2021 Solution Outlines 23 /47

Sword Counting — First solved at 0:48

Some Observations

@ Every sword subtree needs to have a vertex p with the degree of 4. So
the degree of vertex p in the original graph must be at least 4.

@ Every sword subtree also needs to have a vertex g with the degree of
2. So the degree of vertex ¢ in the original graph must be at least 2.
Such vertex g will need to be connected to a vertex p where
degree(p) > 4.

v
Tree Version

@ First let's solve the problem for the case where G is a tree. We will
build our final solution on top of this simple solution.

@ We can iterate over all vertices p which satisfy degree(p) > 4 and fix
this vertex.

@ Then we can iterate and fix all vertices g which are adjacent to p and
also deg(q) > 2.

Problem Author: Mohammadreza Mohseni NAQ 2021 Solution Outlines 24 /47

Sword Counting — First solved at 0:48

Tree Version

@ First let's solve the problem for the case where G is a tree. We will
build our final solution on top of this simple solution.

@ We can iterate over all vertices p which satisfy degree(p) > 4 and fix
this vertex.

@ Then we can iterate and fix all vertices g which are adjacent to p and
also deg(q) > 2.

@ It can be shown that if there are no cycles in the graph, the answer
will be:

>y (degree >>|<(degree(q)—1)

P qg€adj(p)

@ Time complexity: O(N + M)

Problem Author: Mohammadreza Mohseni NAQ 2021 Solution Outlines 25 /47

Sword Counting — First solved at 0:48

Graph Version

@ It can be shown that the algorithm presented for the trees can also
work for any undirected graph which does not contain cycles of length
3 (a.k.a triangles).

o If the given graph contains triangles, we can first count the number of
sword subtrees using the previously discussed algorithm. Then we
deduct the invalid subtrees from the counted subtrees.

o If three vertices vi, v», v3 form a triangle, then the number of invalid
subtrees generated by this triangle is:

2 4 ((deg(v21 - 2)> N (deg(v; — 2)> N (deg(v23 - 2)))

@ By finding all of the triangles in the given graph, we can calculate the
number of sword subtrees.

Problem Author: Mohammadreza Mohseni NAQ 2021 Solution Outlines 26 /47

Sword Counting — First solved at 0:48

Some Observations

@ We call a vertex u heavy if degree(u) > +/|V/|. Otherwise we call it a
light vertex.

@ The number of heavy vertices in a graph is O(\/|E|).

Graph Version

@ Each triangle either contains no light vertex or it contains at least one
light vertex.

@ In order to detect all triangles with no light vertices: Choose any 3
combinations of heavy nodes. O(|V|/|V])

In order to detect all triangles with at least one light vertex: Fix the
light vertex, then iterate over all pairs of its neighbors.O(|V|+/|V])

Connectivity of two vertices can be checked in logarithmic time.
Overall time complexity: O((Nv/N log N) where N = max(|V/, |E|)

Problem Author: Mohammadreza Mohseni NAQ 2021 Solution Outlines

Avoiding Asteroids — First solved at 0:56

Problem

Given a path of a starship (line segment) and set of asteroid directions
(rays), determine if any asteroid could collide with the spaceship.

Problem Author: John Keyser NAQ 2021 Solution Outlines 28 /47

Avoiding Asteroids — First solved at 0:56

Key Insights

@ The tests are conservative: testing whether you possibly could
intersect, so use maximum bounds.

@ Since you don't know how the asteroids will rotate, can treat them as
spheres. Radius is maximum distance of a point on the convex hull to
the center of mass.

o Asteroid danger paths are therefore semi-infinite cylinders, capped by a
hemisphere.

@ If an asteroid danger path overlaps with any part of the spaceshp
path, there could be a collision

Problem Author: John Keyser NAQ 2021 Solution Outlines 29 /47

Avoiding Asteroids — First solved at 0:56

@ Calculate the shortest distance from each asteroid path to the
spaceship path

o If this distance is less than the asteroid radius, there could be a
collision

Shortest Distance

@ Could calculate shortest distance between infinite lines. Represent
lines parametrically and find parameters of point of closest approach.

@ Could also use a ternary search of the asteroid and spaceship paths to
find the minimum distance between line segments (initializing asteroid
path to a very long line segment that extends beyond the bounds).

Problem Author: John Keyser NAQ 2021 Solution Outlines 30 /47

Avoiding Asteroids — First solved at 0:56

Special Cases to Handle

@ Asteroid path and spaceship path are parallel

@ Asteroid’s initial posiiton could hit the spaceship
@ Asteroid’s path overlaps the line of the spaceship, but either before the
starting point or after the base.

@ Asteroid’s closest point of approach to line of spaceship would not
intersect spaceship (e.g. it is behind the spaceship), but the asteroid
would hit it earlier in its path.

Problem Author: John Keyser NAQ 2021 Solution Outlines 31/47

iLove Strings— First solved at 1:09

@ An “ilove" string is a sequence of 5 distinct (distinguishing between
upper and lower case) characters that start as a vowel and alternate
between vowels and consonants.

@ The “loveliness” of a string is the number of subsequences that
form a (not necessarily distinct) “ilove” string.

o Given a string of up to 10° characters determine the string's
“loveliness” mod 10° + 7.

Problem Author: Travis Meade NAQ 2021 Solution Outlines 32/47

iLove Strings— First solved at 1:09

@ An “ilove" string is a sequence of 5 distinct (distinguishing between
upper and lower case) characters that start as a vowel and alternate
between vowels and consonants.

@ The “loveliness"” of a string is the number of subsequences that
form a (not necessarily distinct) “ilove” string.

@ Given a string of up to 10° characters determine the string’s
“loveliness” under mod 10° + 7.

Naive Approach

@ 5 nested loops could be used to try all possible subsequences.

@ A counter could be incremented everytime an “ilove” sequence is

found.

o It would take O(|S|°) time, which would be too slow.

Problem Author: Travis Meade NAQ 2021 Solution Outlines 33 /47

iLove Strings— First solved at 1:09

DP Approach 1

@ Build the string from some prefix subsequence.

Keep track of which letters have been used and position in S.
Try all possible next letters, and skip, if prefix is invalid.

It would take O(|S|?|Z — V/[?|V|?) time, where ¥ is the set of letters,
and V is the set of vowels. This is still too slow.

v

Problem Author: Travis Meade NAQ 2021 Solution Outlines 34 /47

iLove Strings— First solved at 1:09

DP Approach 2

@ A DP table can be kept that stores the counts of the used letters of
prefix subsequences.

@ For each letter in S we update the table counts and the answer if
applicable.

o It would take O(|S||Z — V|?|V|?) time, where V is the set of vowels,
which is very close to the correct runtime, but still a little bit too slow.

4

Problem Author: Travis Meade NAQ 2021 Solution Outlines 35 /47

iLove Strings— First solved at 1:09

DP Optimizations

@ A meet in the middle approach can be used.

@ Two passes one forwards and one backwards build up a prefix and
suffix subsequence.

@ One pass will build up 3 letters and the other will build up 2 letters.
@ One table can use inclusion exclusion to quickly sum the valid spots.

e This would take O(|S||X — V/||V/|) time, which is the intended
runtime.)

Beware of Memory Consumption

Using too much memory can cause TLEs. To avoid this once the final table
of the first pass is constructed the table can be modified to previous states
when passing through S in the opposite direction. O(|S| + | — V|| V)
memory should be used.

Problem Author: Travis Meade NAQ 2021 Solution Outlines 36 /47

Dimensional Analysis — First solved at 1:36

Given a set of equations involving only products/quotients, determine if
any variable must be equal to 1.

Key Ideas

@ Take the logarithm of all equations to turn them into a system of
linear equations

@ Put the system of equations into row-reduced echelon form (RREF)

© Reformulate the problem statement as a condition on the pattern of
zeros and nonzeros in the RREF

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 37 /47

Dimensional Analysis — First solved at 1:36

Conversion to Linear Equations

Every input can be converted into a homogeneous linear equation Ax = 0,
where x contains logarithms of the physical quantities:

Example

F-B=X = logF + log B = log X
F=X-B log F = log X + log B

or in matrix form,

L 1 1| |teB | =0

[1 1 _1] log F
log X

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 38 /47

Dimensional Analysis — First solved at 1:36

Reducing the Matrix

Put the matrix A in row-reduced echelon form. For example:

11—1:>10—1
1 -1 -1 01 0

Analysis

e If a row contains exactly one nonzero (which must be a 1 in some
column i), we have proved that log X; = 0 for the ith quantity X;. So
X; = 1 and equations are invalid.

@ Converse is also true: if some algebraic manipulations can prove
X; = 1, then some sequence of row operations result in a row that
encodes log X; = 0. So: if no row contains exactly one nonzero, no
quantities can be isolated from the others, and original equations are
valid.

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 39 /47

Dimensional Analysis — First solved at 1:36

Implementation Issue

Naive Guassian elimination over R can result in precision issues. (For some
test cases, entries in the RREF matrix can become as small as 27100).

Solutions

@ Perform exact Gaussian elimination over Q
@ Use a probabilistic approach: do Gaussian elimination modulo several
large random primes

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 40 / 47

Dimensional Analysis — First solved at 1:36

Rational Gaussian Elimination

@ Can prove: the entries that appear during Gaussian elimination are
always the ratio of two different minors of the original matrix

@ If kept in lowest terms, entries during Gaussian elimination are thus
fractions 2 where a, b have at most ~ 400 digits.

@ Implement Gaussian elimination using Biglnteger fractions (in Python
or Java ideally)

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 41 /47

Dimensional Analysis — First solved at 1:36

Probabilistic Approach

@ Solving the problem modulo a prime p gives the correct answer if none
of the matrix minors are divisible by p

@ Try multiple large primes p and vote to get the right answer with high
probability

o Alternatively, can deterministically get right answer by trying with

primes p1, ..., px With p1 - po--- px > det A, and carefully tracking
which quantities each prime certifies cannot be equal to 1.

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 42 /47

Venn Intervals — First solved at 2:46

Given a list of regions describing overlapping intervals, find non-degenerate
placement of those intervals.

Key Idea

Non-degeneracy condition allows a greedy algorithm. Split the regions into
connected components, and build each component by placing intervals
from left to right.

Alternate Solution

PQ-tree data structure can be used to solve many overlapping-interval
problems, and can solve this problem too. But complicated to implement.

v

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 43 /47

Venn Intervals — First solved at 2:46

D |

B] O
A

B L1

3 4 5 6 7

-1 0 1 2 8 9
B ANB A ANC anenp' CND' D E F
Some Consequence of Non-Degeneracy

@ No two intervals can start at the same place, or end at the same place

@ Scanning the number line from left to right: each region is one “edit
distance” away from its next and previous region

o If we know the region at the beginning of an interval, we can uniquely
determine the sequence of other regions containing that interval For
example, after AN B must come A, become no other region contains
both A and B. After A must come C, because all remaining regions

that contain A also contain C.
Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 44 /47

Venn Intervals — First solved at 2:46

D
B e |
A

B .

-1 0 1 2 3 4 5 6 7 8 9

AnCcnbD

Connected Component Endpoints

If an interval / is the first in a connected component of regions:
@ The lone interval / must be a region
@ There must be a region / N J for at most one other interval J.

These two properties characterize the connected component endpoints.

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 45 /47

Venn Intervals — First solved at 2:46

Greedy Algorithm

@ Set current-pos to be 0

@ Split regions into connected components
© For each component, build the intervals inside it:
® Find one endpoint (doesn't matter which): interval / where [is an
input region and / N J is an input region for at most one J.
© Set current-region to be /
©® While not done with the connected component:
@ If current-region contains an interval that never appears in any
remaining input region, remove that interval from current-region
@ |If current-region is an input region, remove it from the list of input
regions and increment current-pos
© Otherwise, find any interval J so that current-regionNJ is an input
region. Add J to current-region.

@ During the above, remember for each interval the current-pos when
you open it and close it. Print these endpoints.

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 46 / 47

Venn Intervals — First solved at 2:46

Additional Details

e If at any point you get stuck, or if you have leftover regions at the end
of the above procedure, the problem is IMPOSSIBLE.

@ With careful use of hash tables etc. the whole greedy algorithm is
O(n?).

@ Can use BitSets to represent regions, for a constant factor 1/64
speedup. O(n®) with a 1/64 constant factor is also fast enough to
pass.

Problem Author: Etienne Vouga NAQ 2021 Solution Outlines 47 / 47

