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Problem Tutorial: “Points”
Note that saying ux + vx ≥ uy + vy is equivalent to saying ux − uy ≥ vy − vx. This motivates tracking
ux − uy and vy − vx for the elements in U and V respectively. For each element in U , call ux − uy its
ID, and for each element in V , call vy − vx its ID. Create a segment tree where leaves are keyed on ID.
Each node in the segment tree tracks five values, the minimum possible values of ux, uy, vx, vy, and the
minimum possible value of max(ux + vx, uy + vy) over all points covered by the implied ID range. The
first four values can be maintained directly, so it remains to maintain the fifth value.

Since ux + vx ≥ uy + vy is equivalent to ux − uy ≥ vy − vx, for any internal node, the minimum possible
value of max(ux + vx, uy + vy) is attained by either summing uy from the left child and vy from the right
child, or by summing ux from the right child and vx from the left child. Therefore, updating the values
for a given node can be done in constant time, so each update can be processed in logarithmic time.

Problem Tutorial: “Bingo”
We can see that n2 − n is an upper bound for k, because we need at least one unfilled cell in each row.
Now the question is: is this upper bound tight? That is, can we fill exactly n2 − n cells? It turns out the
answer is yes, except when n = 2. Here we present one of the ways to do that.

If we ignore the diagonal bingo lines for now, we can consider arranging the unfilled cells diagonally:

#####.
####. ####.#
###.# ###.##
##.## ##.###
#.### #.####
.#### .#####

But if we consider the diagonal bingo lines again, this approach sometimes doesn’t work - in particular,
when n is even, the diagonal going from the top-left to bottom-right will always form a bingo line. To
fix this problem, we can slightly modify this approach by swapping the unfilled cells on the first and last
row:

.#####
.#### ####.#
###.# ###.##
##.## ##.###
#.### #.####
####. #####.

Now this solution almost works, but still fails when n = 2. Indeed, there is no way to fill n2 − n cells.
Fortunately n = 2 is the only exception for this approach, so we can just treat it as a separate case.

Problem Tutorial: “AND PLUS OR”
Consider each index i ∈ [0, 2N − 1] as a subset of {0, 1, . . . , N − 1}. We also denote ai as a set function
a(i). Let x = i ∩ j, y = i − j, z = j − i. Then we want to find three disjoint sets x, y, z such that
a(x ∪ y) + a(x ∪ z) < a(x) + a(x ∪ y ∪ z), or a(x ∪ y)− a(x) < a(x ∪ y ∪ z)− a(x ∪ z).

For a fixed x, y, let f(z) = a(x ∪ y ∪ z)− a(x ∪ z). If such z exists, f(∅) < f(z).

Let zj = {i1, i2, . . . , ij} (z|z| = z). Then, there exists some 1 ≤ j ≤ |z| such that f(zj−1) < f(zj). If we
put x′ = x ∪ zj−1, we have a(x′ ∪ y)− a(x′) < a(x′ ∪ y ∪ {ij})− a(x′ ∪ {ij}).
In conclusion, there exists an answer of the form (x, y, {e}) where e is an element that does not belong
to x ∪ y. This gives an algorithm that runs in time O(3N ×N).

If you swap i, j from the above solution and proceed identically, you can see that there exists an answer
of the form (x, {e}, {f}), where e 6= f and {e, f} ∩ x = ∅. The number of such tuples is at most 2N ×N2,
so we can enumerate all of them and obtain an O(2NN2) solution.
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Problem Tutorial: “Two Bullets”
For two buildings i, j (1 ≤ i < j ≤ N) with Ai > Aj , we can see that the building j must be destroyed
after the building i. From this, we can construct a DAG where there exists an edge i → j iff i < j,
Ai > Aj . The operation can be considered as removing at most two nodes with indegree 0.

On a general transitive directed graph, this problem is solved by a method that is very similar to the
lexicographic BFS that computes the PEO of the chordal graph. The algorithm consists of two steps:
Constructing a topological ordering, and constructing an operation sequence from the topological ordering.

When constructing a topological ordering, we take the vertices such that their lexicographical order is
minimized. We add the vertex repeatedly in the topological order, where the chosen vertex must have all
incoming neighbors already in the topological order. If there are more than one such vertices, they are
compared by the following rules: Let N(v) = {t1, t2, . . . , tk} be the decreasingly-sorted sequence where
each element denotes a time when its incoming neighbors were added. Then, the algorithm picks a vertex
that minimizes N(v) per its lexicographic order.

Given this topological ordering, we can construct an optimal solution by considering vertices in reverse
topological order. At each step, consider all nodes with outdegree 0, and take two nodes that have the
highest index in the topological order. If there are no such two nodes, you should take just one.

Implementing this procedure naively will yield an O(N3) algorithm, so we will optimize it. Let level(v)
be the length of the longest path from v to any vertex with outdegree 0. In a given graph, this value can
be computed in O(N logN) time with a segment tree. Then, it can be shown that, if level(i) < level(j),
the topological ordering will always select j earlier than i.

As a result, the topological sort procedure can be reduced to an actual sorting procedure, where you take
all nodes at the same level and sort them by their neighbors. To compare N(v) and N(w) efficiently, note
that this is essentially equivalent to comparing the maximum between N(v)−N(w) and N(w)−N(v). If
you plot the points in 2D coordinate as (i, Ai), then the area represented by N(v)−N(w), N(w)−N(v)
is a rectangle. Thus the comparison is reduced as a 2D range maximum query which can be done with
2D segment trees. This solves the topological ordering in O(N log3N).

Given the topological ordering, you can maintain the set of 0-degree vertices in heap, where each vertex is
ordered by its topological order. If a vertex is removed, then you can recover the newly created 0-degree
vertices from the segment tree.

In this editorial, many proofs are omitted. If you want a formal treatment over the above claims, you can
take a look at the following papers.

• Coffman, Edward G., and Ronald L. Graham. "Optimal scheduling for two-processor systems."Acta
informatica 1.3 (1972): 200-213.

• Sethi, Ravi. "Scheduling graphs on two processors."SIAM Journal on Computing 5.1 (1976): 73-82.

Remark. As Yuhao Du once noted (https://codeforces.com/blog/entry/63630), the minimum time is
equal to N - (maximum matching in the complement of dependency graph). Since the complement of the
permutation graph is a permutation graph, this problem is both related to the two-processor scheduling
and the maximum matching on the permutation graph. This perspective enables a different kind of (and
probably faster) approach.

In the permutation graph, you can recover the solution from the maximum matching in O(n log n) time
(left as an exercise). There exists an algorithm that computes the maximum matching in permutation
graphs (https://link.springer.com/article/10.1007/BF01178659) in O(n log log n) time, you can
yield a faster solution. (This was the very first intended solution, but the author didn’t have time to
verify the paper’s correctness.)

And vice versa, the model solution can be considered as a suboptimal algorithm to compute the
maximum matching in the permutation graph, which is essentially the approach from this paper:
https://carleton.ca/scs/wp-content/uploads/TR-95-12.pdf.
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Problem Tutorial: “Yet Another Interval Graph Problem”
For convenience, we’ll call a set of intervals good if all connected components have size at most K.

Take the union of intervals in each connected component. The intervals represented by each component
are disjoint. From this, we will use the DP approach where we fix the union of intervals and fill each
component.

Discretize the intervals to have coordinates up to 2N , and define f(x) to be the maximum cost of intervals
such that the chosen intervals are good, considering only intervals whose rightmost endpoint is less than
or equal to x. The answer is therefore

∑N
i=1wi − f(2N).

If we define g(a, b) to be the maximum cost of intervals to take such that, considering only intervals that
lie entirely in [a, b], the resulting set of intervals belongs to a single good connected component, then we
have that f(x) = max0≤a<x f(a) + g(a + 1, x). To compute g(a, b), we can simply find the intervals that
lie entirely within the interval [a, b] and take the ones with top-k weight. This may result in not having
the single connected component, but it doesn’t matter since each connected component will remain good
anyway. Since g(a, b) can be computed naively in O(N3 logN) time, it remains to compute g efficiently.

If we sweep a from 0 to x− 1, with some careful bookkeeping we can compute f(x) in O(x) time, which
would give us an O(N2) algorithm. We’ll consider all intervals with left endpoint less than or equal to
x active, and furthermore partition them into intervals which extend past x and intervals which do not.
When we sweep a in increasing order, some intervals become inactive. We wish to maintain the sum of
the K heaviest intervals that do not go past x, which can be done by sweeping those in decreasing order
of weight and making sure we have included no more than K of them.

Problem Tutorial: “Lag”
Let’s solve an easier variant where M = 0 holds. For each rectangle [x1, x2] × [y1, y2], create two points
(x1, y1), (x2 + 1, y2 + 1) of weight 1, and (x1, y2 + 1), (x2 + 1, y1). By the inclusion-exclusion principle, the
number of rectangles containing the point (x, y) is the sum of weight of points over the area [1, x]× [1, y].
This value can be computed via sweep line over x-coordinate, where you use Fenwick tree as an underlying
structure to maintain prefix sums over y-coordinate.

With this interpretation, you have N + M trails of weighted points moving over the coordinate axes and
both diagonals and need to compute the sum of weights over the area [1, x] × [1, y]. When solving this
problem, we can consider each direction independently and sum the total weights over all directions.

Let’s consider the solution for all four cases of directions.

Case 1: Parallel over x axis. Use sweeping over y-coordinate. You have to maintain a data structure
that supports range addition and range sum query. Segment tree with lazy propagation, or Fenwick trees
storing linear functions suffices.

Case 2: Parallel over y axis. Swap the x, y coordinate and call the solver for case 1.

Case 3: Parallel over y = x. Let the queried area be [1, cx] × [1, cy]. Let’s divide these queried areas
into two triangles: One with x − y ≤ cx − cy, y ≤ cy and other with x − y > cx − cy, x ≤ cx. For both
cases, you want to compute the sum of intersection with line y − x = C,L ≤ x ≤ R, or equivalently
L + C ≤ y ≤ R + C. By replacing the parameter y − x as x-coordinate for the first, and y-coordinate for
second, those two problem is reduced to that of Case 1 or Case 2.

Case 4: Parallel over y = −x. Let the queried area be [1, cx] × [1, cy]. Then the queried area is an
intersection of area y ≤ cy, x + y ≤ cx + cy subtracted by intersection of area x > cx, x + y ≤ cx + cy.
From this point you can do similarly with Case 3.

As the Case 1 subproblem can be solved in O((N + M + Q) logC) time, and other subproblem can be
reduced to Case 1 in linear time, the whole problem is solved in O((N + M + Q) logC).

Problem Tutorial: “Critical Vertex”
If the graph is disconnected (which happens if the removed edge is a bridge), then the number of the
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critical vertex is N , except the special case where one of the components has size 1. Otherwise, the graph
is always connected, and the definition of the critical vertex is now equivalent to that of the cut vertex.

From this point, let’s assume that the graph is 2-vertex connected (biconnected), and every edge is not
a bridge (in other words, each biconnected component has at least 2 edges). Using the block-cut tree, we
can decompose the graph into biconnected components.

The general idea is to approach the problem in terms of 3-connectivity. Let’s consider an augmented
graph, where each edge is converted into degree-2 vertices that connect the original endpoints of the edge.
Then the original problem asks to compute all 2-vertex cuts in the augmented graph, where one vertex is
the given edge-vertex and another vertex should be the original vertex. In this sense, we will consider the
similar problem of computing a number of 2-vertex cuts v1, v2 on a biconnected graph and come back to
apply the solution in this specific situation. Note that we are not explicitly building an augmented graph
in the solution. The intention is to simply settle the unified framework.

We can build a DFS tree T over the augmented graph. Then, observe that every cut v1, v2 should form
an ancestor-descendant relation, and they can disconnect the graph into the following components.

• Component that contains the ancestors of v1.

• Subtrees of v1, except the subtree that contains the vertex v2.

• Component that contains the middle path between v1 and v2.

• Subtrees of v2.

Observe that the first and second types are always connected since v1 is not a cut vertex. For a similar
reason, each subtree of v2 is either connected to the first or second type unless all its back edge heads
to v1. Let’s denote the first and second as upper component, third as middle component, fourth as lower
component(s). For each specific case, we will focus on how their connectivity behaves.

Let’s first solve the easier case, where the removed edge e is a back edge. Note that the DFS tree T of the
original graph is almost identical to the DFS tree of the augmented graph, except that each tree-edges are
converted as a vertex, and each back edges are a leaf hanging on the deeper endpoint. Therefore, for back
edges lower component does not exist, and we have to determine if the upper and middle components are
disconnected.

For the upper and middle components to be disconnected, the vertex should be strictly inside the path
induced by back edge e (excluding the endpoints). Let e = (u, v) be the back edge where v is the deeper
endpoint. If the graph with vertex x ∈ path(u, v) \ {u, v} removed is disconnected, then there should be
no back edge that connects the strict ancestors of x with x’s subtree toward v.

For each back edge f = (u, v) that is not e (not deleted), let the path induced by it {p1 = u, p2, . . . , pk = v}.
Label each edge (p2, p3), (p3, p4) . . . (pk−1, pk). If edge (par(v), v) is labeled, it means that the vertex par(v)
can not be a cut vertex if the shallow endpoint of e is a strict ancestor of par(v), and deeper endpoint of
e is in subtree of v.

Therefore, we can first maintain a total count of labels on all back edges. For each back edge, we decrement
the count for the path and compute the unlabeled edges in the tree. In a biconnected graph, all edges are
initially labeled, so we only have to count such edges in the path induced by back edges. This is equivalent
to computing the number of tree edges with count 1, therefore we can maintain a total count by difference
array in a tree, and compute the number of such edges by prefix sum over root-vertex paths. The back
edge case is solved in O(M). Be careful, that even there is no cut vertex in the biconnected graph, some
vertex may be globally cut vertex.

Now we move to the hard case of tree edge e = (par(v), v). Here, new cut vertices can be formed over the
path from par(v) to the root, and the subtree of v. Let’s denote

• r as the root vertex.
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• Tv as the subtree of Tv.

• up(Tv) as the set of back edges that starts from subtree v and ends at the strict ancestors of v

• above(Tv) as the set of back edges that starts from subtree v and ends at the strict ancestors of
par(v)

Assume that the new cut vertex u is a parent of v. This is possible when one of the following events
happen:

• All edges in up(Tv) ends at a vertex u. (This disconnects the lower component with all others.)

• Let c(u) be the child of u in the direction toward v. Then {e|e ∈ up(Tv), e 6= (u, ∗)} = above(Tc(u).
(This disconnects the middle components.)

Note that both events are disjoint, and the case where u is a root is a corner case.

Now assume that the new cut vertex u is in a subtree of v. You can assume that u 6= v, since v can’t be
a cut vertex. Obviously, there should be no edges from Tv − Tu to Tr − Tv since it connects the upper
and middle components. Then, for all child ch(u) of u, it should not connect both the upper and middle
components. If we consider all edges in above(Tch(u)) for each child, the edge with the lowest depth and
highest depth should belong to the same components. In other words, if we take above(Tch(u)) as an
interval, it should not cover the depth of v.

If there are no edges from Tv − Tu to Tr − Tv, it means that all endpoint of up(Tv) is in the subtree of u.
As a result, we can summarize the condition as:

• All lower endpoint of up(Tv) is in the subtree of u.

• The depth of v should not belong to the interval of above(T (ch(u)) for all child ch(u).

This finishes the description of the algorithm. Now we should find an efficient implementation of the above
algorithm. We can’t afford all the technical explanation, so we will only list what is necessary to obtain
a full solution.

• To support the operation for up(Tv) or above(Tv) we don’t have to compute the whole set. Let’s
denote the lower endpoint of the back edge as bottom and the higher one as top. We only have to
compute the lowest and highest depth of all top vertex, and the LCA of all bottom edges. This can
be naively done in O(nm).

• To compute the above values efficiently, note that a back edge u → v affects the value
up(Tu), up(Tpar(u)) . . . , up(Tch(v)). We sort all back edges in decreasing order of top vertex depth.
Then we should support writing values for the given path in a tree, where all overwrites are ignored.
This can be implemented by path compression in O(M logN) time. To compute the LCA of all
bottom vertex, we only have to find the one with highest/lowest DFS preorder, which can be done
identically. After finding such vertex we can afford O(N) computation of LCA.

• Given that the values are computed, the first case of the parent case can be done in a single DFS.

• The second case of the parent case is reduced to counting a vertex u in some root-vertex path which
have lca(above(Tu)) in the subtree of v. This can be done in a single DFS, where we maintain a
Fenwick tree over the DFS preorder.

• For the subtree case, for each u, there exists at most deg(u) + 1 admissible depths of v. We compute
this interval by a single sweep. Then for each v, we have to compute the number of u, which is an
ancestor of lca(up(Tv)), and contains dep[v] as an admissible depth. This can be computed with a
single DFS where we maintain a Fenwick tree over the depths.
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Problem Tutorial: “Endless Road”
Use coordinate compression. Let’s call each length 1 interval after coordinate compression an atomic
interval. In other words, coordinate compression partitions the road into at most 2N atomic intervals.

For each member, we maintain the total length of the unplanted intervals remain[i], so that we can find
the member to plant. When a member plants the flowers, we plant them for each atomic interval one by
one. Planting for some atomic interval implies reducing the value remain[i] for all members containing
that interval, which can be naively processed in O(N) time. This happens for at most O(N) times, so we
obtain an O(N2) algorithm.

Assume that Li ≤ Li+1, Ri ≤ Ri+1. If we remove an atomic interval, the members for which we should
reduce the value remain[i] form an interval over that sorted sequence. This interval can be found with
binary search.

Thus, we want to find the minimum over remain[i], find atomic intervals newly removed, and for each of
them do a range decrement operation. The first and third operations can be done by a segment tree with
lazy propagation in O(logN) time. The second operation can be done by maintaining a set of unplanted
atomic intervals. This in total gives an O(N logN) algorithm. To avoid processing a member twice, set
remain[i] to a sufficiently large number after the turn. Keep in mind that ties should be broken by the
original indices of the members.

For a full solution, we need a following key observation:

Lemma. For two different members i, j, if Li ≤ Lj , Rj ≤ Ri, then member i always works earlier than
member j.

Proof. Observe that remain[i] ≤ remain[j] always holds for such a pair of members. If
remain[i] < remain[j], the statement holds. If remain[i] = remain[j], then i < j by the non-decreasing
length condition in the problem.

Let’s call a member candidate if it does not contain any other members. In other words, it does not
certainly work later than other members. To compute the set of candidates, we sort all members in the
increasing order of L, where ties are broken by the decreasing order of R. Then we scan in the decreasing
order of sorted indices (N − 1 to 0), adding a member if its Ri is smaller than all other scanned intervals.
In other words, a member in the i-th sorted order is a candidate if the suffix minimum of index i is
different from that of i + 1. Be careful that the index here differs from the index given in the input.

Given that we can maintain the candidates (in std::set) we can solve the problem. For each member
not in the candidate, set remain[i] to a sufficiently large number. Then the intervals could be found with
an lower_bound operation in the set, and all other things can be done accordingly.

However, the set of candidates changes after we process each member. Specifically, we delete the candidate
after the turn, and the removal of the candidate creates other possible candidates. To solve this, it’s helpful
to get back to the naive algorithm of finding candidates: It computes the suffix minimum and finds where it
changes. As the member is removed (or, the member’s value becomes infinity, in terms of suffix minimum),
we have to reconstruct the position where it changes.

Let’s store the list of endpoints in the range minimum segment tree. Then we repeatedly find the minimum
element m (rightmost in case of a tie), add it to the candidate, and start ignoring the position m and left
of it. This algorithm finds the candidate in the same way the above algorithm does. The only difference is
that this runs in the backward direction. Now, if we remove candidate i from the set, we find the candidate
j that is adjacent to the left of i from std::set. Now, we start in a state where j is the latest candidate
found and repeat the algorithm. We finish the algorithm when we find the candidate already in the set,
or we just run out of new candidates. This algorithm runs in logN time for each found candidate, and we
don’t find the same candidate twice, so the total complexity is O(N logN) for candidate reconstruction.
If we finish processing each member, we have to set its value infinity in the segment tree.

When activating a new member, we don’t know its actual remain[i] value because we did not maintain
it. We keep a segment tree that maintains the sum of the unplanted intervals. When we remove an atomic
interval, we modify the set and the segment tree simultaneously. Then, in time of activation, we can
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compute the remain[i] value for new candidates.

Summing it down:

• We keep a std::set for maintaining the candidates.

• We keep a minimum segment tree with lazy propagation to maintain remain[i] array for candidates.

• We keep a std::set and sum segment tree (Fenwick tree) to maintain the unplanted atomic
intervals.

• We keep a minimum segment tree to reconstruct the candidates.

The total time complexity is O(N logN).

Problem Tutorial: “Streetlights”
We denote the pair of streetlights visible if an electric wire can be installed. For each count query, we
have to count the number of visible pairs. It’s easy to observe that the number of such pairs is at most N
since for each streetlight i the only possible j > i is the streetlight with equal height Hi = Hj .

Let’s solve an easier case where we can assume Q ≤ 8 000. In this case, most of the streetlights will not
have their heights changed. Let’s say the streetlight is static when there are no queries that change its
height.

For each count query, let’s separately consider cases where at least one streetlights in the pair are not
static. In this case, we can just iterate all non-static streetlights and find their closest streetlight with
equal height in both directions. Therefore, this case can be solved in O(Q) time.

Otherwise, we have to count the number of visible pairs where both streetlights are static. Assume all the
non-static streetlights have Ai = 0 and enumerate all visible pairs between all visible streetlights. If we
model each visible pair as an open interval containing both streetlights, they form a laminar interval set.
In other words, for any pair of intervals, one contains the other or they are disjoint.

Let’s build a tree structure where each interval is a vertex, and the parent of each vertex is the smallest
interval that contains it. A non-static streetlight will make a pair invisible if the pair’s height is not
greater than it and the interval contains the streetlight. Such pairs form a path toward the ancestor in
the tree, so we can reduce the problem into a tree query problem, where we cover or uncover some paths
in the tree and count the number of uncovered vertices. This can be done with appropriate structures,
say heavy-light decomposition.

As a result, we obtain a solution that works in O(N +Q2 +Q log2N) which can pass the case Q ≤ 8 000.
This can be tweaked to an sqrt-decomposition solution, but the limits are designed to make those solutions
time out.

Let’s use the above observation to derive a completely different solution, that doesn’t even involve heavy-
light decomposition. We use a divide and conquer over the queries. For each subproblem [s, e] of the
D&C stage, we maintain the set E, which contains the set of static streetlight pairs that is visible if all
non-static streetlights over query [s, e] have height 0.

While the size of the interval [s, e] would be halved, the size of set E may remain linear to N . The idea
here is, if the number of queries is small, there are not many distinct intervals in terms of their visibleness.
For example, there are at most O(e− s + 1) distinct heights, O(e− s + 1) distinct start and endpoints of
the visible pairs, since the visibleness can only be affected by non-static streetlights. This alone can give
an O((e− s + 1)3) distinct intervals of streetlights, and we can compress them by storing the number of
counts of intervals that share the same attribute.

Indeed, we can obtain a much sharper bound of O(e− s + 1) distinct intervals. From the previous HLD-
based solution, we know that a single update over a non-static streetlight updates the visibility of intervals
in a certain path on the tree. The visibleness of an interval is determined by the set of paths covering the
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vertex. We can show that there exists at most O(e−s+1) different set of paths for each vertex. The easiest
constructive proof for this statement is to apply the tree compression method over the endpoints of each
path. However, you will probably need a simpler construction method to actually obtain the construction,
since this tree compression is complicated to implement and have a large constant factor.

Finally, when recursing down to the subproblems, we should create the new set El, Er which contains all
streetlight pairs that can be visible. This can be easily done by maintaining a range maximum segment
tree that contains all static streetlights with respect to the current recursion interval. As the base case
can be trivially solved in O(1), and each compression stage takes O((e−s+1) log(N +Q)) time, the total
problem can be solved in O((N + Q) log2(N + Q)) time.

Remark. Note the similarity of this solution and the Eppstein’s algorithm for the Offline Dynamic MST.

Problem Tutorial: “Diameter Pair Sum”
To solve this problem in linear time per query, find the center of the queried component by computing a
diameter and locating its ancestor. For convenience, assume that the center is a vertex of the tree. Root
the tree from the center, and compute the following value for each vertex to its subtree:

• The farthest distance from the vertex to its descendants.

• The number of such descendants.

• For a pair of vertex which is farthest from the root, the sum of distance from root to their LCA.

Those values can be computed for each subtree for linear time and can be used to compute the desired
answer.

To support the link-cut operation, we can adopt similar dynamic programming in the Top Tree. In the
rake node, we simply store the pointwise sum of the DP. In the compress node, we store the DP value
by considering the case where the leftmost or rightmost node becomes the root. If we store one vertex
index that gives the farthest distance, we can compute the diameter and the center of the component in
O(log n) time, where we can reroot the tree and compute the answer for the query in O(log n) time.

As a result, the problem can be solved in O(n + q log n) time.

Problem Tutorial: “Fake Plastic Trees 2”
We use dynamic programming on the tree, where we solve a problem for all rooted subtrees and recursively
merge the solutions. Root the tree at vertex 1. Let Tv be a subtree rooted at vertex v.

Let DP [v][k][x] be a boolean value which is true if there are k closed subtrees and one extendable
subtree that has the weight sum of x in Tv. An extendable subtree is either empty, or contains a vertex v.
It is extendable in a sense that it may contain other vertices and increase its size. If an extendable subtree
is empty, then all subtrees under v are closed, including the one that contains the vertex v.

Then, we have the following recursive rule:

• Base case: For a leaf v, you have two cases: add v to an extendable, or closed subtree. If you add
it to a closed subtree, then L ≤ Av ≤ R should hold.

• Merge: For two children w1, w2 of v, we will shrink them to obtain one child w equivalent
to both children. If DP [w1][k1][x1] and DP [w2][k2][x2] are both true, then we can consider
DP [w][k1 + k2][x1 + x2] to be true.

• Extend: For a vertex v with a single child w, we will add the vertex v as a parent. If DP [w][k][x]
is true, then DP [v][k][x + Av] is true. If L ≤ x + Av ≤ R, then we may want to close the subtree
rooted in v, which makes DP [v][k + 1][0] true.
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Naively implementing this yields O(NK2R2) time complexity, where the bottleneck comes from Merge
rule. However, note that k1 ≤ |Tw1 | and k2 ≤ |Tw2 |, which means the iteration count can be bounded as
c×R2×

∑
v∈T (min(K, |Tw1 |)×min(K, |Tw2 |)) for some constant c. Here, the following well-known lemma

holds.

Lemma 1. Given a binary tree T ,
∑

v∈T min(K, |Tw1 |)×min(K, |Tw2 |) = O(|T |K).

Proof. Use double counting. min(K, |Tw1 |) is the number of vertices in the left subtree with K highest
DFS preorder numbers, min(K, |Tw2 |) is the number of vertices in the right subtree with K lowest DFS
preorder numbers. The number of pairs of such vertices is at most the number of vertices with DFS
preorder number difference at most 2K, which is O(|T |K).

Thus the dynamic programming runs in O(NKR2) time.

Let’s optimize this dynamic programming solution. It is convenient to consider the DP value as a set of
weights. Let S(v, k) = {x|DP [v][k][x]}. For two set A,B, define the sumset A+B = {a+b|a ∈ A, b ∈ B}.
With this notation, we can revisit the recursive rule in much cleaner way.

• Base case: S(v, 0) = {Av} (if Av ≤ R), S(v, 1) = {0} (if Av ∈ [L,R]).

• Merge: S(w, k) =
⋃

0≤i≤k S(w1, i) + S(w2, k − i).

• Extend: S′(v, k) = S(w, k) + {Av}. S(v, k) = S′(v, k). If [L,R] ∩ S′(v, k) 6= ∅, then
S(v, k + 1) := S(v, k + 1) ∪ {0}.

And we want to determine if 0 ∈ S(1,K + 1). To optimize this lets proceed to another lemma.

Lemma 2. maxS(v, k)−minS(v, k) ≤ k(R− L).

Proof. The sum of weights in closed subtrees is in the range [kL, kR], and the sum of weights in Tv is
fixed.

Note that we are only interested in if there is an element in some interval of length R − L. (0 ∈ S is
equivalent to [−(R− L), 0] ∩ S 6= ∅).
Consider the following algorithm reduce(S) for some set S. Let a, b, c ∈ S and a < b < c, c− a ≤ R− L.
Then, we can remove the middle element b, while not changing any interval query result of length R−L.
An easy way to implement this algorithm is to place buckets of length R − L + 1 and take only the
minimum and maximum elements over the buckets. For any set S(v, k) the algorithm can be implemented
in time O(|S(v, k)|+ k) and can guarantee |reduce(S(v, k))| ≤ 2k.

To obtain a polynomial-time algorithm, we want to apply S(v, k) := reduce(S(v, k)) after each Merge and
Extend case. We perform the sumset operation for O(NK) times (by Lemma 1), and each operation takes
O(K2) time, thus the final time complexity is O(NK3) and the problem is solved. However, to prove its
correctness, we have to show that the reduce operation preserves the query result even after applying the
sumset operation. This can be proved in the following step.

Definition. For b ∈ N and A ⊆ N, define

• apx−(b, A) := max{a ∈ A|a ≤ b}

• apx+(b, A) := min{a ∈ A|a ≥ b}

We say A ∆-approximates B if A ⊆ B and for every b ∈ B, apx+(b, A)− apx−(b, A) ≤ ∆.

Lemma 3. If A is a ∆-approximation of B, then [x, x + ∆] ∩A = ∅ iff [x, x + ∆] ∩B = ∅.
Proof. ← is trivial. Suppose [x, x + ∆] ∩ A = ∅ and y ∈ [x, x + ∆] ∩ B. Then y ∈ B and
apx+(y,A)− apx−(y,A) > ∆.

Lemma 4. If A1 ∆-approximates B1 and A2 ∆-approximates B2, then A1+A2 ∆-approximates B1+B2.

Proof. Consider all x + y ∈ B1 + B2. If x + y ∈ A1 + A2 or x ∈ A1 or y ∈ A2, then the statement holds.
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Otherwise, Let x1 = apx−(x,A1), x2 = apx+(x,A1), y1 = apx−(y,A2), y2 = apx+(y,A2), and WLOG
x2 − x1 ≤ y2 − y1.

Let Z be the nondecreasing sequence {x1 + y1, x2 + y1, x1 + y2, x2 + y2}. Observe that Z ⊆ A1 + A2,
x2 − x1 ≤ ∆, y2 − y1 ≤ ∆, (y2 − y1)− (x2 − x1) ≤ ∆. We can see any element b ∈ [x1 + y1, x2 + y2] have
apx+(b, A1 + A2)− apx−(b, A1 + A2) ≤ ∆, which is the case for x + y.

Lemma 5. reduce(S) is a (R− L)-approximation of S.

Proof. Immediate from the algorithm.

Problem Tutorial: “Curly Racetrack”
For convenience, we’ll call a grid valid if the admin can fill in the rest of the racetrack.

Let’s first start by taking the role of the admin - how can we verify that a grid is valid? There are some
states that are obviously invalid - for example, if two adjacent cells have incompatible roads. It turns out
that this is a necessary and sufficient condition.

We need to make a few observations to prove this. Two horizontally adjacent cells must have curly tiles
with opposite horizontal orientations (either they point into each other or they point away from each
other). We can make a similar realization for vertically adjacent cells. If we color the cells according to
their horizontal and vertical orientations, we can see that if two adjacent cells both have curly tiles in
them, they must have different colors.

Because of this alternating pattern, we are now motivated to flip every other square’s color. This now
means that a segment of curly tiles is monochromatic. Note that the admin has the power to select other
tiles, which effectively flips the color of the cell within the row or column. Therefore, as long as two
nonempty adjacent cells are not different colors, the admin can always insert tiles in the given locations
to respect the desired coloring. This completes the given proof.

The desired condition is equivalent to minimizing the number of cells that do not contain curly tiles.
Perform the reduction above and color the grid along both rows and columns, validating that the admin
is able to insert tiles to fix cells which are tentatively colored differently. Assuming it is possible for the
admin to fill in the grid as is to make it valid, we have maximal horizontal and maximal vertical segments
where we must have a non-curly tile because the cells on both ends are different colors. These segments
form a bipartite graph, the maximum matching of which tells us which cells should not contain curly tiles.
All other cells can contain curly tiles, per above.
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