
Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Problem Tutorial: “Two Trees”
Build the centroid decompositions of both trees and denote them as C1 and C2. Consider some pair of
vertices (v, u). Let w1 and w2 be the LCAs of u and v in C1 and C2, respectively. Let

f(v, w1, w2) = d(v, w1, T1) + d(v, w2, T2).

Note that
(d(v, u, T1) + d(v, u, T2))

2 = (f(v, w1, w2) + f(u,w1, w2))
2.

To calculate the answer for a fixed pair (w1, w2), store the following data in each vertex:

• cnt[v] — the count of v’s

• sumf [v] — the sum of f(v, w1, w2)

• sumf2 [v] — the sum of f(v, w1, w2)
2

The answer computation can be reduced to some queries of two types: add a vertex — update the above
data; get some vertice’s contribution to the answer — add

cnt[v] · f(v, w1, w2)
2 + 2 · sumf [v] · f(v, w1, w2) + sumf2 [v]

to the answer. As for the order in which to process the vertices: fix w1 and iterate over only those v’s that
lie in w1’s subtree in C1. The time complexity of this solution is O(n log2 n). Here is a link to a correct
code for better understanding: https://ideone.com/RbNhuw.

Problem Tutorial: “Tarzan Jumps”
Let ansk be the answer for k. If we set H1 and HN to 0, then Tarzan will be able to reach the last tree
in 1 jump. Thus, ansk ≤ 2 for any k. So, ansk = 0, 1 or 2. Since ansk ≥ ansk−1, then the array ans will
look like this: 2, 2, . . . , 2, 1, 1, . . . , 1, 0, 0, . . . , 0. It follows that it is enough to find such minimal p0 and p1
that ansp0 = 0 and ansp1 = 1.

1) How to find p0.

Consider a jump from tree x to tree y in which all the intermediate trees are lower than both of those
trees (the other case is similar). There are two possibilities:

• hx ≤ hy. Then y is the first tree to the right of x, which is not lower than x.

• hx > hy. Then x is the first tree to the left of y, which is not lower than y.

Hence, the number of pairs (x, y) such that the jump from tree x to tree y is possible is of magnitude
O(n). For each tree, we can find the closest tree to the right (and left) of it, which is not lower (higher)
than it (using a stack). Using this information, we can compute Ai — the minimum number of jumps
required to reach the i-th tree. Clearly, p0 = An.

2) How to find p1.

Let Bi be the minimum number of jumps to reach tree N starting from tree i (it can be computed in the
same way as Ai). Let pos be the tree the height of which we change.

There are two cases:

1. The shortest path from 1 to N does not visit pos. The jump from i to j after one change is possible
if initially one of the two conditions was held:

(a) There was at most one tree between i and j with height at least min(hi, hj).

Page 1 of 8

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

(b) There was at most one tree between i and j with height at most max(hi, hj).

Let’s consider the first case (the second case is similar, you can just multiply all the numbers by
(−1)).
Let li be the second tree to the left of i that is not lower than tree i (if there is no such tree, then
let li = 1). Let ri be the second tree to the right of i that is not lower than tree i (if there is no
such tree, then let ri = n). Tarzan can jump from i to j after one change if and only if lj ≤ i and
j ≤ ri (we need to change the highest tree between i and j for enabling this jump). Among such
i, j we need to find those for which Ai +1+Bj is minimal. It can be done with a standard scanline
algorithm and a segment tree. Initially, in leaf i we store the value Ai. After that, we iterate from
j = 1 to j = n. We update p1 with getmin(l[j], j)+Bj +1. And finally, for every i such that ri = j,
in leaf i we change the value to INF .

2. The shortest path from 1 to N visits pos. Let i and j be such that in the shortest path Tarzan
jumps from i to pos, and then from pos to j.

There are 4 cases:

(a) All trees between i and pos are lower than i and pos, and all trees between pos and j are lower
than pos and j. We can safely set Hpos = INF . It is possible to jump from i to pos if and only
if i appeared in the stack from part 1 at the moment before we processed tree pos (the stack
which was used to find the closest from the left tree that is not lower than the current tree).
To find an optimal i, we can maintain all values Ax in a set, where x is a tree on the stack.
This way, we can find i with minimal Ai, from which Tarzan can jump to pos. Similarly, find
j with minimal Bj and update p1 with Ai +Bj + (pos 6= 1) + (pos 6= n).

(b) All trees between i and pos are higher than i and pos, and all trees between pos and j are
higher than pos and j. It is similar to case (a).

(c) All trees between i and pos are lower than i and pos, and all trees between pos and j are higher
than pos and j. For this to happen the following condition must hold:

max(Hi+1, Hi+2, ..,Hpos−1) + 1 < min(Hpos+1, ..,Hj−1).

Since
max(Hi+1, Hi+2, ..,Hpos−1) < Hi,

then the total number of possible values of max for all i’s will be of magnitude O(n). Let’s
iterate over all pairs (i, k) (such that Hk = max(Hi+1, Hi+2, ..,Hpos−1)). It is optimal to choose
pos as the first tree to the right of k that is not lower than Hk. Set Hpos = Hk + 1. Let pos2
be the first tree to the right of pos that is not higher than Hk + 1. Since

max(Hi+1, Hi+2, ..,Hpos−1) + 1 < min(Hpos+1, ..,Hj−1),

then j ≤ pos2. j must satisfy the following conditions:

pos < j ≤ pos2, Lj ≤ pos,

where Lj is the first tree to the left of j that is not higher than Hj . Among all such j’s we
need to find one with minimal Bj , and update p1 with Ai + Bj + 2. This can be done offline
with a segment tree.

(d) All trees between i and pos are higher than i and pos, and all trees between pos and j are
lower than pos and j. It is similar to case (c).

Problem Tutorial: “Inversions”
Solution follows by dynamic programming + Fast Fourier transform in O(k2 log(k)).

Page 2 of 8

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

First, understand value inv(π)k as k pairs of inversions of permutation π, namely (a1, b1), . . . , (ak, bk) s.t.
π(ai) > π(bi). These pairs may occupy not more that 2k positions. We want to calculate the number of
pairs (π,M), where M = {(a1, b1), . . . , (ak, bk)} the list of pairs (ai, bi) not necessarily distinct. Let us
fix the set of distinct indices S = {a1, b1, . . . , ak, bk} occupied by M . Knowing S and π(S) (what is on
positions from S) we can calculate how many completions to full π there are, but we need to calc large
factorials within it so we should do precalc for every 106 factorial up until the modulo.

So we start with simple dp. Let ai,j denotes number of pairs (π,M) where pi is permutation of size i and
M is j selected distinct (as pairs) inversions. From the state (i, j) we can add new element i + 1 with
q new inversions selected in

(
i+1
q+1

)
ways. Indeed, select q + 1 elements from i + 1 - this corresponds to

inserting element i+ 1 at leftmost position. Then it could be calculated as

ai+1,j+q+ = ai,j ·
(
i+ 1

q + 1

)
in O(k3) time. But we can do better with FFT in O(k2 log(k)). Let ai(x) =

∑
j ai,jx

j and
Qi(x) =

∑
q

(
i+1
q+1

)
xq then ai+1(x) = ai(x) ·Qi(x).

Note, that above DP does not guarantees that selected inversion pairs occupy entire π. Let bi,j be as ai,j
but additionally we guarantee that M covers entire π. Then b can be calculated as follows:

bi,j = ai,j −
i−1∑
k1=1

bi−k,jf(i, k) where f(i, k) :=

(
i

k

)2

k!

i.e. we take pairs (π,M) with non-covered elements and subtract bad ones with k non-covered elements.
Note, formulas does not depend on j, so let us solve the problem for fixed j and omit this index. Last
formula could be rewritten as

bi =
∑

k1+...+kc≤i
(−1)cai−k1−...−kcf(i, k1)f(i− k1, k2) · . . . · f(i− k1 − . . .− kc−1, kc)

where term

f(i, k1)f(i− k1, k2) · . . . · f(i− k1 − . . .− kc−1, kc) =
∑

k1+...+kc=i

(−1)c i!2

k1! . . . kc!(i− k1 − . . .− kc−1)!2
.

Let a′i = ai/i!
2 and b′i = bi/i!

2 and denote ci =
∑

k1+...+kc=i(−1)c
1

k1!...kc!
. Then again

b′i =
∑

x+y=i

a′x · c′y

hence can be optimized with FFT as well. Finally we collect the answer using simple combinatorics. Recall
that we need to calculate n! once so we should precalc it up until modulo.

Complexity: O(k2 log(k))

Problem Tutorial: “Mountains”
Solution. Consider such an array a[1..n, 1..m] (that represents a valid map). Let’s calculate a standard
DP:

dp[i, j] = a[i, j] + max(dp[i+ 1, j], dp[i, j + 1]),

which stores the largest sum over all paths from (i, j) to (n,m). We can observe two facts:

• dp[1, 1] ≤ k;

• dp[i, j] ≥ dp[i+ 1, j] and dp[i, j] ≥ dp[i+ 1, j] for i = 1, . . . , n and j = 1, . . . ,m.

Page 3 of 8

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Let’s view matrix dp as a pile of cubes: put dp[i, j] cubes on top of the cell (i, j). (see fig. 1). Such an
object is called a plane partition. We will reduce the initial problem to the problem of counting plane
partitions in a box n×m× k.

Figure 1. From left to right: array a[i, j], dp on array a, dp as plane partition, ‘corner flats’ map to entries of a.

First, let’s understand that the map a→ dp is a bijection between n×m matrices with largest path ≤ k
and plane partitions in a box n ×m × k. To show that, we can provide a simple inverse map: suppose
that you are given a plane partition dp[i, j], then

a[i, j] = dp[i, j]−max(dp[i+ 1, j], dp[i, j + 1]).

To understand the meaning of entries a[i, j] in terms of a plane partition, take a look at the rightmost
picture of Fig. 1.

Now, to calculate the number of plane partitions in a box we can use several methods. One of the coolest
is to view an arbitrary plane partition as a non-intersecting path system in a way represented in Fig. 2.
Non-intersecting path systems in any planar directed acyclic graph can be enumerated by calculating the
determinant of the ‘path’ matrix f [i, j] = number of paths from i→ j in the graph (by Lindstrom-Gessel-
Viennot lemma). This can be done in O(N3) time with the Gaussian elimination algorithm.

Alternatively, entries fi,j =
(
m+n
n+j−i

)
are in fact binomial coefficients, so you can calculate the answer

explicitly. This approach leads to a beautiful formula:

PP (n,m, k) =
n∏

i=1

m∏
i=1

k∏
i=1

i+ j + k − 1

i+ j + k − 2
,

which can be calculated in O(N) time, but this was not required.

Complexity: O(n3)

Page 4 of 8

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Figure 2. Correspondence between plane partitions in a box and non-intersecting path systems.

Open problem. Calculate PP (100, 100, 100, 100), i.e. number of DPs dp[i, j, k] ≤ 100 with similar
inequalities in all directions.

Problem Tutorial: “Kill All Termites”
We need to poison minimal number of vertices so that any path between two leaves contains poisoned
vertex. Run DFS from the vertex of degree 2 and perform: if v is leaf the set a[v] = 1, if v is non-leaf
the set a[v] =

∑
u - son of v a[u], and if a[v] > 1 then we poison this vertex and set a[v] = 0. This way

we ensure that each path between leaves contains a poisoned vertex, on the other hand if some vertex v
encountered a[v] > 1 but were not poisoned, then there certainly is a poisonless path.

Problem Tutorial: “Aidana and Pita”
Solution follows with “meet in the middle” approach. Let us split the array into two halves of size n

2 and
for each part consider all possible 3n/2 < 1.6 · 106 distributions of dishes into 3 groups. Denote L1 and
L2 as lists of resulting sums (x, y, z) in left and right parts. Let (x1, y1, z1) be from L1 and (x2, y2, z2)
be from L2. Since all 3! permutations of same distribution is in L2 we may consider only the case when
x1 + x2 ≥ y1 + y2 ≥ z1 + z2, then we want to minimize x1 + x2 − z1 − z2 → min.

Transform each triplet in L1 by the rule (x1, y1, z1) → (x1 − y1, y1 − z1) and each triplet from L2 as
(x2, y2, z2) → (y2 − x2, z2 − y2). Then it is not hard to see, that for pair of points (a1, b1) ∈ L1 and
(a2, b2) ∈ L2 we want to minimize a1 + b1 − a2 − b2 → min having a1 ≥ a2 and b1 ≥ b2.
Merge lists L1 and L2 into L and sort L in increasing order of first coordinate. We will iterate over L and
for fixed (a1, b1) ∈ L1 find the best fit. For that we maintain set S of pairs (b, a + b) of points from L2

with both coordinates increasing. So we iterate over pairs (a, b) ∈ L and think:

• if (a, b) is from L1 then take from S point with maximal second coordinate (with max a+ b),

Page 5 of 8

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

• if (a, b) is from L2 then remove all the points (b′, a′ + b′) ∈ S with b < b′ but a + b > a′ + b′, and
the insert (b, a+ b)→ S.

Then at each moment of time set S will contain points of L2 in weakly increasing order of both coordinates,
since we move in increasing order of a and remove non optimal solutions when needed.

Time complexity: O(3n/2n)

Problem Tutorial: “Box Packing”
Let us sort pairs (ai, bi) lexicographically (first by ai, if equal then by bi). Then the problem is reduced
to largest number of elements in k disjoint weakly increasing subsequences of b. To solve this we use RSK
algorithm.

First, recall the classical Longest Increasing Sequence search algorithm, that stores d[i] = smallest value
of last element of increasing subsequence of length i. The algorithm is following:

1. initially we have vector d empty;

2. We insert number one by one, to insert x we find smallest j such that x < d[j] = y, then x ‘bumps’
y, i.e. we set d[j] = x. Otherwise, if x is not smaller than any number in the row we append it to
the end. As a result, We have vector d weakly increasing, so we can find suitable j with bin-search.

3. after all numbers inserted, the size of d is the answer.

Basically, RSK is an extension of this algorithm. We now have not a single row d, but several rows
d1, d2, Initially, they are all empty. Analogically, we insert number one by one as is (2), but instead of
forgetting about the bumped value y we insert it into the next row. This value will be either appended
to the end of the current row or bump yet another number which is again inserted to the next row and
so on.

As a result, we get sequence of rows d1, . . . , dm so that entries weakly increase in each row and strictly
increase in each column (why?). Let λi = size(di), then λ is called partition of n (sum of lengths is equal
to n), a.k.a Young diagram if drawn as λi empty boxes at row i. Let λ′ be a partition of the same diagram
but by columns (for example λ = 322 then λ′ = 331). It turns out to be a fact that:

Theorem.[Greene 1974] Let λ be a diagram that results after applying RSK algorithm to the word
b1, . . . , bn. Then

• λ1 + . . .+λk is equal to largest number of entries in the union of k weakly increasing subsequences;

• λ′1+ . . .+λ
′
k is equal to largest number of entries in the union of k strictly decreasing subsequences.

Using this, we need to store only first k rows and ignore numbers going to the k + 1-st row.

Complexity: O(nk log(n))

See the proof in Stanley, Enumerative Combinatorics Vol. 2, Appendix A. It is non-trivial, it would be
interesting to find more direct argument.

Proof sketch. Let w be a word and RSK(w) = P of shape λ and Ik(w) is answer for initial problem.
Show that the statement is true for permutation (or word) w0 that is formed by reading tableau from
bottom to top appending row by row (called reading word). Clearly RSK(w0) = P . We show first that
Ik(w0) = λ1 + . . .+ λk. Further we show, that RSK(w) = RSK(w0) if and only if w ∼ w0 where ∼ is so
called Knuth equivalence relation on words. Finally we prove that w ∼ w0 and Ik are preserved by Knuth
transformations.

Remark. Telegram conversation yield an interesting question: how to restore the answer? One approach
could be the following. We first find the answer for w0 (i-th row of RSK(w0) is i-th subsequence). Further
we find the sequence of Knuth moves from w0 → w and change answer according to Knuth moves.

Page 6 of 8

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Problem Tutorial: “Two Permutations”
Problem. Calculate the number of permutations p, q of size n so that

∑n
i=1max(pi, qi) = k.

Solution. First of all, let’s express our permutations as a table with two rows and fill it in increasing
order. For example matrix after placing first 3 numbers:

For this matrix, let x be the number of complete columns, y be the number of columns where only the
upper cell is filled, and z be the number of columns where only the lower cell is filled. The fact that we fill
cells in increasing order of numbers implies that the the last placed number is immediately the greatest in
the column and we can add it to the sum. Secondly, we can notice that whenever we placed the numbers
from 1 to some i, x is equal to y.

Let dp[i][x][s] be the number of ways to place the numbers from 1 to i in the table so that there are x
complete columns and the current sum is s, then

y = z = i− x

and we perform transitions as follows:

• we can put both of the i in the empty columns:

dp[i+ 1][x][s]+ = dp[i][x][s];

• we can create one complete column and there are y + z ways to do that:

dp[i+ 1][x+ 1][s+ i]+ = dp[i][x][s] · 2(i− x);

• We can create two complete columns and there are x2 ways to do that:

dp[i+ 1][x+ 2][s+ 2i]+ = dp[i][x][s] · x2.

The last step is to optimize the memory usage. Let’s notice that to calculate any dp[i+1][x][s] you don’t
need to know dp[i− 1][x′][s′]. So at any given moment you just need to store two n× k matrices.

Complexity: O(n2k)

Problem Tutorial: “Fancy Arrays”
Let’s first consider a suboptimal solution. We write down all divisors of m as d1 = 1, . . . , dk = m and
create a matrix D[i, j] = [gcd(di, dj) > 1]. Then the answer is equal to the sum of entries of vector
(0, . . . , 0, 1) ·Dn. It can be computed with fast matrix exponentiation.

We now need to reduce the dimensions of that matrix. Let’s think of what we really care about in
transitions from one divisor to another:

• We can treat all primes with equal occurrences αi = αj as indistinguishable. Let us group them
together in C1, . . . , Cg, and for each group remember the corresponding occurrence αi;

• For each prime we only care if it is present in adjacent divisors, so we may think αi = 0 or 1 and
store the number of non-zero powers. So for each group Ci we can store the number of 1s in group
Ci satisfying 0 ≤ bi ≤ |Ci|.

Page 7 of 8

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

After these optimizations, we will have N ≤ 255 states, each of which can be described as (b1, . . . , bg)
where bi denotes the number of primes from group Ci with non-zero occurrences. Let i and j be the states
described above. Note that for a fixed divisor d1 of state i, the number of possible divisors d2 of j is the
same for all d1 from state i. Hence, we set D[i, j] to be the number of transitions between states i and j,
which can be calculated combinatorially by “ALL - BAD” principle, and do matrix exponentiation of an
N ×N matrix D.

Finally, to answer the queries we can precalculate all powers of matrix D that are powers of 2
(D1, D2, D4, D8, . . .) and answer each query in N3 log(n) time.

Complexity: O(qN3 log(n))

Problem Tutorial: “Restricted Arrays”
Let G be graph on elements of an array. For each rule (x, y) let us draw a directed edge x→ y with weight
1 and edge y → x of weight +1. If we do unorientation of the graph then the edge means x and y can
be recovered from each other. Now let us start at some vertex v0, without loss of generality a[v0] = 0 (if
we have some valid array a for some M the we can shift all elements by −a[v0] then that would be valid
array as well). Then start DFS from v0 and calculate a[v] for each v in connected component of v0. This
way you will satisfy rules that are edges from DFS tree. To satisfy edge (v, u) outside of DFS tree you
want abs(a[v] − a[u] + w(v, u))mod M == 0 where w(v, u) is a weight of an edge (u, v). Thus any valid
M must be divisor of

N = gcd(v,u) - back edges of dfs(abs(a[v]− a[u] + w(v, u))

Thus we calculate N for each connected component, take gcd of all Ns, store it in N0. Then the answer
would be all divisors of N0.

Time complexity: O(n+ q · log(n)).

Page 8 of 8

