
Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Problem Tutorial: “Two Trees”
Build the centroid decompositions of both trees and denote them as C1 and C2. Consider some pair of
vertices (v, u). Let w1 and w2 be the LCAs of u and v in C1 and C2, respectively. Let

f(v, w1, w2) = d(v, w1, T1) + d(v, w2, T2).

Note that
(d(v, u, T1) + d(v, u, T2))

2 = (f(v, w1, w2) + f(u,w1, w2))
2.

To calculate the answer for a fixed pair (w1, w2), store the following data in each vertex:

• cnt[v] — the count of v’s

• sumf [v] — the sum of f(v, w1, w2)

• sumf2 [v] — the sum of f(v, w1, w2)
2

The answer computation can be reduced to some queries of two types: add a vertex — update the above
data; get some vertice’s contribution to the answer — add

cnt[v] · f(v, w1, w2)
2 + 2 · sumf [v] · f(v, w1, w2) + sumf2 [v]

to the answer. As for the order in which to process the vertices: fix w1 and iterate over only those v’s that
lie in w1’s subtree in C1. The time complexity of this solution is O(n log2 n). Here is a link to a correct
code for better understanding: https://ideone.com/ys8hqj.

Problem Tutorial: “Tarzan Jumps”
Let ansk be the answer for k. If we set H1 and HN to 0, then Tarzan will be able to reach the last tree
in 1 jump. Thus, ansk ≤ 2 for any k. So, ansk = 0, 1 or 2. Since ansk ≥ ansk−1, then the array ans will
look like this: 2, 2, . . . , 2, 1, 1, . . . , 1, 0, 0, . . . , 0. It follows that it is enough to find such minimal p0 and p1
that ansp0 = 0 and ansp1 = 1.

1) How to find p0.

Consider a jump from tree x to tree y in which all the intermediate trees are lower than both of those
trees (the other case is similar). There are two possibilities:

• hx ≤ hy. Then y is the first tree to the right of x, which is not lower than x.

• hx > hy. Then x is the first tree to the left of y, which is not lower than y.

Hence, the number of pairs (x, y) such that the jump from tree x to tree y is possible is of magnitude
O(n). For each tree, we can find the closest tree to the right (and left) of it, which is not lower (higher)
than it (using a stack). Using this information, we can compute Ai — the minimum number of jumps
required to reach the i-th tree. Clearly, p0 = An.

2) How to find p1.

Let Bi be the minimum number of jumps to reach tree N starting from tree i (it can be computed in the
same way as Ai). Let pos be the tree the height of which we change.

There are two cases:

1. The shortest path from 1 to N does not visit pos. The jump from i to j after one change is possible
if initially one of the two conditions was held:

(a) There was at most one tree between i and j with height at least min(hi, hj).

Page 1 of 9

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

(b) There was at most one tree between i and j with height at most max(hi, hj).

Let’s consider the first case (the second case is similar, you can just multiply all the numbers by
(−1)).
Let li be the second tree to the left of i that is not lower than tree i (if there is no such tree, then
let li = 1). Let ri be the second tree to the right of i that is not lower than tree i (if there is no
such tree, then let ri = n). Tarzan can jump from i to j after one change if and only if lj ≤ i and
j ≤ ri (we need to change the highest tree between i and j for enabling this jump). Among such
i, j we need to find those for which Ai +1+Bj is minimal. It can be done with a standard scanline
algorithm and a segment tree. Initially, in leaf i we store the value Ai. After that, we iterate from
j = 1 to j = n. We update p1 with getmin(l[j], j)+Bj +1. And finally, for every i such that ri = j,
in leaf i we change the value to INF .

2. The shortest path from 1 to N visits pos. Let i and j be such that in the shortest path Tarzan
jumps from i to pos, and then from pos to j.

There are 4 cases:

(a) All trees between i and pos are lower than i and pos, and all trees between pos and j are lower
than pos and j. We can safely set Hpos = INF . It is possible to jump from i to pos if and only
if i appeared in the stack from part 1 at the moment before we processed tree pos (the stack
which was used to find the closest from the left tree that is not lower than the current tree).
To find an optimal i, we can maintain all values Ax in a set, where x is a tree on the stack.
This way, we can find i with minimal Ai, from which Tarzan can jump to pos. Similarly, find
j with minimal Bj and update p1 with Ai +Bj + (pos 6= 1) + (pos 6= n).

(b) All trees between i and pos are higher than i and pos, and all trees between pos and j are
higher than pos and j. It is similar to case (a).

(c) All trees between i and pos are lower than i and pos, and all trees between pos and j are higher
than pos and j. For this to happen the following condition must hold:

max(Hi+1, Hi+2, ..,Hpos−1) + 1 < min(Hpos+1, ..,Hj−1).

Since
max(Hi+1, Hi+2, ..,Hpos−1) < Hi,

then the total number of possible values of max for all i’s will be of magnitude O(n). Let’s
iterate over all pairs (i, k) (such that Hk = max(Hi+1, Hi+2, ..,Hpos−1)). It is optimal to choose
pos as the first tree to the right of k that is not lower than Hk. Set Hpos = Hk + 1. Let pos2
be the first tree to the right of pos that is not higher than Hk + 1. Since

max(Hi+1, Hi+2, ..,Hpos−1) + 1 < min(Hpos+1, ..,Hj−1),

then j ≤ pos2. j must satisfy the following conditions:

pos < j ≤ pos2, Lj ≤ pos,

where Lj is the first tree to the left of j that is not higher than Hj . Among all such j’s we
need to find one with minimal Bj , and update p1 with Ai + Bj + 2. This can be done offline
with a segment tree.

(d) All trees between i and pos are higher than i and pos, and all trees between pos and j are
lower than pos and j. It is similar to case (c).

Problem Tutorial: “Inversions”
Let Sn be the set of all permutations of length n, π — an element of Sn, I(π) — the set of inversions in
π (|I(π)| = inv(π)), and

Mj(π) = {((α1, β1), (α2, β2), . . . , (αj , βj)) | (αi, βi) ∈ I(π)}, |M(π)| = inv(π)j .

Page 2 of 9

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Also, let

Dj(π) = {{(α1, β1), (α2, β2), . . . , (αj , βj)} | (αi, βi) ∈ I(π), ∀i < t : (αi, βi) 6= (αt, βt)},

and
Gj(π) = {d | d ∈ Dj(π), {α1, β1, . . . , αj , βj} = {1, 2, . . . , |π|}}

Then the answer can be interpreted as

|{(π,m) | π ∈ Sn, m ∈Mk(π)}|.

Let
ai,j = |{(π, d) | π ∈ Si, d ∈ Dj(π)}|, 1 ≤ i ≤ 2k, 0 ≤ j ≤ k.

The following recurrence relation holds:

ai,j =

j∑
q=0

ai−1,j−q ·
((

0

q

)
+

(
1

q

)
+ . . .+

(
i− 1

q

))
=

j∑
q=0

ai−1,j−q ·
(

i

q + 1

)
.

Think of it as choosing a position for i. Let

Ai(x) =
∑
j

ai,jx
j , Qi(x) =

∑
q

(
i+ 1

q + 1

)
xq,

then
Ai(x) = Ai−1(x) ·Qi−1(x).

Let
bi,j = |{(π, d) | π ∈ Si, d ∈ Gj(π)}|, 1 ≤ i ≤ 2k, 0 ≤ j ≤ k.

It satisfies the following recurrence relation:

bi,j = ai,j −
i−1∑
t=1

bi−t,j

(
i

t

)2

t!

Think of it as choosing the elements that are not covered by some d ∈ Dj(π). Let

f(i, t) :=

(
i

t

)2

t!, bi,j = ai,j −
i−1∑
t=1

bi−t,jf(i, t).

Rewrite the last formula:

bi,j =
∑
v

∑
t1+...+tv≤i

(−1)vai−t1−...−tv ,jf(i, t1)f(i− t1, t2) . . . f(i− t1 − . . .− tv−1, tv) =

=
∑
v

∑
t1+...+tv≤i

(−1)vai−t1−...−tv ,j ·
i!2

t1! . . . tv!(i− t1 − . . .− tv)!2
=

=
∑
v

∑
t1+...+tv≤i

i!2 · ai−t1−...−tv ,j
(i− t1 − . . .− tv)!2

· (−1)v

t1! . . . tv!
.

Let
A∗j (x) =

∑
i

ai,j
i!2

xi,

B∗j (x) =
∑
i

bi,j
i!2
xi,

Page 3 of 9

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

C(x) =
∑
i

(∑
v

∑
t1+...+tv=i

(−1)v

t1! . . . tv!

)
xi.

Then
B∗j (x) = A∗j (x) · C(x).

So, we can find bi,j ’s using FFT in O(k2 log(k)) time. After that, computing the answer is straightforward.

If n ≥ 998 244 353, the answer is zero. Otherwise, we will have to compute n! one time. It can be done by
storing some precalculated factorials in the source code.

Complexity: O(k2 log(k))

Problem Tutorial: “Hidden Rook”
TL;DR There are a lot of special cases in this problem. Apart from them, the main idea is the following.
Ask about a rectangle in a corner whose sides are not equal and are approximately halves of the current
big rectangle’s dimensions. Based on the answer, go into one of the four subrectangles, but store some
information about the previous rectangle, as it may be needed in the future. Don’t forget to think outside
the box.

Problem Tutorial: “Mountains”
Solution. Consider such an array a[1..n, 1..m] (that represents a valid map). Let’s calculate a standard
DP:

dp[i, j] = a[i, j] + max(dp[i+ 1, j], dp[i, j + 1]),

which stores the largest sum over all paths from (i, j) to (n,m). We can observe two facts:

• dp[1, 1] ≤ k;

• dp[i, j] ≥ dp[i+ 1, j] and dp[i, j] ≥ dp[i+ 1, j] for i = 1, . . . , n and j = 1, . . . ,m.

Let’s view matrix dp as a pile of cubes: put dp[i, j] cubes on top of the cell (i, j). (see fig. 1). Such an
object is called a plane partition. We will reduce the initial problem to the problem of counting plane
partitions in a box n×m× k.

Figure 1. From left to right: array a[i, j], dp on array a, dp as plane partition, ‘corner flats’ map to entries of a.

First, let’s understand that the map a→ dp is a bijection between n×m matrices with largest path ≤ k
and plane partitions in a box n ×m × k. To show that, we can provide a simple inverse map: suppose
that you are given a plane partition dp[i, j], then

a[i, j] = dp[i, j]−max(dp[i+ 1, j], dp[i, j + 1]).

To understand the meaning of entries a[i, j] in terms of a plane partition, take a look at the rightmost
picture of Fig. 1.

Page 4 of 9

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Now, to calculate the number of plane partitions in a box we can use several methods. One of the coolest
is to view an arbitrary plane partition as a non-intersecting path system in a way represented in Fig. 2.
Non-intersecting path systems in any planar directed acyclic graph can be enumerated by calculating the
determinant of the ‘path’ matrix f [i, j] = number of paths from i→ j in the graph (by Lindstrom-Gessel-
Viennot lemma). This can be done in O(N3) time with the Gaussian elimination algorithm.

Alternatively, entries fi,j =
(
m+n
n+j−i

)
are in fact binomial coefficients, so you can calculate the answer

explicitly. This approach leads to a beautiful formula:

PP (n,m, k) =

n∏
i=1

m∏
i=1

k∏
i=1

i+ j + k − 1

i+ j + k − 2
,

which can be calculated in O(N) time, but this was not required.

Complexity: O(n3)

Figure 2. Correspondence between plane partitions in a box and non-intersecting path systems.

Open problem. Calculate PP (100, 100, 100, 100), i.e. number of DPs dp[i, j, k] ≤ 100 with similar
inequalities in all directions.

Problem Tutorial: “Kill All Termites”
We need to poison the minimum number of vertices so that any path between any two leaves contains a
poisoned vertex. Run a DFS from a vertex of degree at least 2 and do the following: if v is a leaf then set
a[v] = 1, otherwise set a[v] =

∑
u - son of v a[u], and if a[v] > 1 then poison this vertex and set a[v] = 0.

This way we ensure that each path between leaves contains a poisoned vertex. On the other hand, if we
don’t poison some vertex v with a[v] > 1, then there certainly is a safe path for termites.

Problem Tutorial: “Maximal Subsequence”
This problem was taken from AITU Open Spring 2021.

Page 5 of 9

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Let L be the beauty of the given array, and

li = the length of the longest increasing subsequence ending with ai,

ri = the length of the longest increasing subsequence starting with ai.

Note that it is reasonable to only delete those i’s for which li + ri − 1 = L. Let M be the set of all such
i’s. Let

V = {S, T} ∪ {iin, iout | i ∈M},

E = {(S, iin, 1) | li = 1} ∪ {(iout, T, 1) | li = L} ∪ {(iout, jin, 1) | li + 1 = lj , ai < aj},

G = (V,E) (G is a flow network).

It is easy to see that our problem is equivalent to finding the minimum cut of G. Since the minimum
cut is equal to the maximum flow, then our problem reduces to the following: find the maximum
number of pairwise disjoint increasing subsequences of length L. It turned out that exactly this problem
appeared in a recent contest. You can find a greedy algorithm that solves it here (with proof):
https://dmoj.ca/problem/coci21c1p5/editorial.

Problem Tutorial: “Aidana and Pita”
We will use the “meet in the middle” approach. Let’s split the given array into two halves of size n

2 and
for each part consider all possible 3n/2 < 1.6 · 106 distributions of dishes into 3 groups. Let L1 and L2 be
the lists of sums (x, y, z) in the left and right parts. Let (x1, y1, z1) be from L1 and (x2, y2, z2) be from
L2. Without loss of generality, x1 + x2 ≥ y1 + y2 ≥ z1 + z2. Now we want to minimize x1 + x2 − z1 − z2.
Transform each triplet in L1 as (x1, y1, z1) → (x1 − y1, y1 − z1) and each triplet from L2 as
(x2, y2, z2) → (y2 − x2, z2 − y2). Then it is not hard to see that for a pair of points (a1, b1) ∈ L1 and
(a2, b2) ∈ L2, we want to minimize a1 + b1 − a2 − b2 having a1 ≥ a2 and b1 ≥ b2.
Merge the lists L1 and L2 into L and sort L in increasing order of the first coordinate. We will iterate
over L and find the best fit for a fixed (a1, b1) ∈ L1. To do so, we maintain a set S of pairs (b, a + b) of
points from L2 with both coordinates increasing. So we iterate over pairs (a, b) ∈ L and think:

• if (a, b) is from L1, then take from S a point with maximal second coordinate (with max a+ b),

• if (a, b) is from L2, then remove all the points (b′, a′ + b′) ∈ S with b < b′ but a + b > a′ + b′, and
insert (b, a+ b) into S.

Then at each moment of time set S will contain the points of L2 in weakly increasing order of both
coordinates since we move in increasing order of a and remove non-optimal solutions when needed.

Time complexity: O(3n/2n)

Problem Tutorial: “Box Packing”
Let’s sort the pairs (ai, bi) lexicographically. Then the problem is reduced to finding the largest number
of elements that can be split into k disjoint weakly increasing subsequences of b. To solve this, we will use
the RSK algorithm.

First, recall the classical Longest Increasing Sequence search algorithm that stores d[i] = the smallest
value of the last element of an increasing subsequence of length i. The algorithm then does the following:

1. initially, vector d is empty;

2. insert the numbers one by one. To insert x, we find the smallest j such that x < d[j] = y, then x
‘bumps’ into y, i.e. we set d[j] = x. Otherwise, if x is not smaller than any number in the row, we
append it to the end. As a result, vector d will be weakly increasing, so we can find a suitable j
with binary search.

Page 6 of 9

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

3. after all numbers are inserted, the size of d is the answer.

RSK is an extension of this algorithm. We now have not a single row d, but several rows d1, d2, Initially,
they are all empty. Similarly, we insert the numbers one by one as in (2), but instead of forgetting about
the bumped value y, we try to insert it into the next row. This value will be either appended to its end
or bumped yet into another number which is again inserted into the next row and so on.

As a result, we get a sequence of rows d1, . . . , dm such that the entries weakly increase in each row and
strictly increase in each column (why?). Let λi = size(di), then λ is called a partition of n (sum of lengths
is equal to n), a.k.a a Young diagram if drawn as λi empty boxes in row i. Let λ′ be a partition of the
same diagram but by columns (for example, if λ = (3, 2, 2) then λ′ = (3, 3, 1)). It turns out that:

Theorem.[Greene 1974] Let λ be a diagram that we get after applying the RSK algorithm to a word
b1, . . . , bn. Then

• λ1+. . .+λk is equal to the largest number of entries in the union of k weakly increasing subsequences;

• λ′1+. . .+λ
′
k is equal to the largest number of entries in the union of k strictly decreasing subsequences.

Therefore, we need to store only the first k rows and ignore the numbers going to the k + 1-st row.

Complexity: O(nk log(n))

See the proof in Stanley, Enumerative Combinatorics Vol. 2, Appendix A. Unfortunately, it is non-trivial;
finding a more direct argument would be interesting.

Proof sketch. Let w be a word and RSK(w) = P of shape λ and let Ik(w) be the answer for the initial
problem. Show that the statement is true for a permutation (or word) w0 that is formed by reading the
tableau from bottom to top appending row by row (called reading a word). Clearly, RSK(w0) = P . We
show first that Ik(w0) = λ1 + . . .+ λk. Then we show that RSK(w) = RSK(w0) if and only if w ∼ w0,
where ∼ is the so called Knuth equivalence relation on words. Finally, we prove that w ∼ w0 and Ik are
preserved by the Knuth transformations.

Remark. The discussion in a Telegram PTZ chat yielded an interesting question: how to restore the
answer? One approach could be the following. First, find the answer for w0 (the i-th row of RSK(w0)
is the i-th subsequence). Then find the sequence of Knuth moves from w0 → w and change the answer
according to them.

Problem Tutorial: “Two Permutations”
First of all, let’s think of our permutations as a matrix with two rows and fill it in increasing order. For
example, after placing the first 3 numbers our matrix will look like this:

For this matrix, let x be the number of complete columns, y be the number of columns where only the
upper cell is filled, and z be the number of columns where only the lower cell is filled. The fact that we fill
the cells in increasing order of numbers implies that the last placed number is immediately the greatest
in the column and we can add it to the sum. Also, notice that after we place all the numbers from 1 to
some i, y is equal to z.

Let dp[i][x][s] be the number of ways to place the numbers from 1 to i in the matrix so that there are x
complete columns and the current sum is s, then

y = z = i− x

and we perform the transitions as follows:

Page 7 of 9

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

• we can put both of the i’s in the empty columns:

dp[i+ 1][x][s]+ = dp[i][x][s];

• we can create one complete column and there are y + z ways to do that:

dp[i+ 1][x+ 1][s+ i]+ = dp[i][x][s] · 2(i− x);

• we can create two complete columns and there are x2 ways to do that:

dp[i+ 1][x+ 2][s+ 2i]+ = dp[i][x][s] · x2.

The last step is to optimize the memory usage. Note that to calculate any dp[i+1][x][s] we don’t need to
know dp[i− 1][x′][s′]. So at any given moment we just need to store two n× k matrices.

Complexity: O(n2k)

Problem Tutorial: “Fancy Arrays”
Let’s first consider a suboptimal solution. We write down all divisors of m as d1 = 1, . . . , dk = m and
create a matrix D[i, j] = [gcd(di, dj) > 1]. Then the answer is equal to the sum of entries of vector
(0, . . . , 0, 1) ·Dn. It can be computed with fast matrix exponentiation.

We now need to reduce the dimensions of that matrix. Let’s think of what we really care about in
transitions from one divisor to another:

• We can treat all primes with equal occurrences αi = αj as indistinguishable. Let us group them
together in C1, . . . , Cg, and for each group remember the corresponding occurrence αi;

• For each prime we only care if it is present in adjacent divisors, so we may think αi = 0 or 1 and
store the number of non-zero powers. So for each group Ci we can store the number of 1s in group
Ci satisfying 0 ≤ bi ≤ |Ci|.

After these optimizations, we will have N ≤ 255 states, each of which can be described as (b1, . . . , bg)
where bi denotes the number of primes from group Ci with non-zero occurrences. Let i and j be the states
described above. Note that for a fixed divisor d1 of state i, the number of possible divisors d2 of j is the
same for all d1 from state i. Hence, we set D[i, j] to be the number of transitions between states i and j,
which can be calculated combinatorially by “ALL - BAD” principle, and do matrix exponentiation of an
N ×N matrix D.

Finally, to answer the queries we can precalculate all powers of matrix D that are powers of 2
(D1, D2, D4, D8, . . .) and answer each query in N3 log(n) time.

Complexity: O(qN3 log(n))

Problem Tutorial: “Restricted Arrays”
Let G be a graph on the elements of an array that satisfies the given conditions. For each condition (x, y),
let’s draw a directed edge x→ y with weight −1 and an edge y → x with weight +1. Let’s consider some
vertex v0. Without loss of generality, a[v0] = 0 (if we have some valid array a for some M then we can
shift all the elements by −a[v0] and get another valid array). Start a DFS in v0 and calculate a[v] for each
v in the connected component of v0. This way you will satisfy the rules corresponding to the direct edges
from the DFS tree.

To satisfy a backward edge (v, u) we want abs(a[v] − a[u] + w(v, u))mod M == 0 where w(v, u) is the
weight of edge (u, v).

Thus, any valid M must be a divisor of

N = GCD(v,u) - a backward edge of the DFS(abs(a[v]− a[u] + w(v, u))

Page 8 of 9

Day 3: Kazakhstan Contest
42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

So, calculate N for each connected component, take the GCD of all Ns, store it in N0. Then the answer
would be all the divisors of N0.

Time complexity: O(n+ q · log(n)).

Page 9 of 9

