
Day 6: Yandex Cup 2022
42nd Petrozavodsk Programming Camp, Winter 2022, Sunday, February 6, 2022

Problem Tutorial: “Interesting Subsegments”
Consider some array. Let’s calculate prefix sums modulo 3. If there are x sums equal to 0, y sums equal
to 1 and z sums equal to 2 number of interesting subsegments will be:(
x
2

)
+
(
y
2

)
+
(
z
2

)
Also, lexicographically smallest array corresponding to such values will have form x − 1 zeroes, 1, y − 1
zeroes, 1, z − 1 zeroes.

So, we are interested in finding lexicographically largest solution:(
x
2

)
+
(
y
2

)
+
(
z
2

)
= k

x+ y + z = n+ 1

We can iterate over values of x in decreasing order, then numbers y and z are reconstructed uniquely(by
solving quadratic equation).

Problem Tutorial: “Even Forest”
Paint all vertices of G in black and white alternately. A tree in the forest will be even if all of its leaves
will be of the same color. Define the color of an even subtree as the color of its leaves.

We can hang the tree from any vertex and use DFS to compute for each vertex v the following three
values.

• s(v) — minimum number of edges to be removed from the subtree below v so that the obtained
subforest is even and v is in a tree of its own color.

• o(v) — minimum number of edges to be removed from the subtree below v so that the obtained
subforest is even and v is in a tree of opposite color.

• p(v) — minimum number of edges to be removed from the subtree below v so that the obtained
subforest in union with v’s parent vertex and parent edge is even and v is in a subtree of opposite
color (this has the effect of allowing a leaf v to temporarily violate its tree color provided that v will
later be connected to its parent and thus have higher degree in future)

Note that there are cases when o(v) or p(v) are undefined (for example if v is a leaf). In such cases we set
them to ∞.

Assume that during DFS(v) these values have been computed for all children of v. This is how we compute
s(v), o(v), p(v).

• s(v). For each child u we can either keep edge uv and remove p(u) edges below u or remove uv and
s(u) edges below u. Thus

s(v) =
∑

u∈ children(v)

min{p(u), s(u) + 1}.

• o(v) and p(v). For a node to be in a tree of opposite color it must not be a leaf. Depending on
whether its parent edge will be included in its tree or not at least 1 or 2 of its children must be in
trees of their own color so that it can be connected to them and have deg v > 1 in the resulting
forest.

Here again for each child u we can either keep uv and remove s(u) other edges or remove uv and
o(u) more edges. According to this, the optimal sum would be∑

u∈ children(v)

min{s(u), o(u) + 1}.

But since we also have to keep at least 2 children connected for o(v) and at least 1 for p(v), we
may be forced to in some cases chose s(u) over o(u) + 1 even if s(u) > o(u) + 1. Choosing s(u) over

Page 1 of 5



Day 6: Yandex Cup 2022
42nd Petrozavodsk Programming Camp, Winter 2022, Sunday, February 6, 2022

o(u) + 1 worsens the result by s(u) − (o(u) + 1), thus in this case we need to connect the children
which minimize s(u)− (o(u) + 1).

The answer to the problem is min{s(root), o(root)}.

Problem Tutorial: “Yellow Blue Bus”
Suppose that (a, b) is center of the circle and R is radius.

For blue point (xi, yi) we can rewrite condition as:

(xi − a)2 + (yi − b)2 ≥ R↔ −2axi − 2byi − (R2 − a2 − b2) + (x2i + y2i ) ≥ 0.

For yellow point (xi, yi) we can rewrite condition as:

(xi − a)2 + (yi − b)2 ≤ R↔ 2axi + 2byi + (R2 − a2 − b2)− (x2i + y2i ) ≥ 0.

So, if we denote R2 − a2 − b2 = c conditions are equivalent to point (a, b, c) belonging to the intersection
of some halfspaces(of the form (−2xi,−2yi,−1, x2i + y2i ) or (2xi, 2yi, 1,−x2i − y2i )).
There exist some advanced algorithms for this problem, which can solve this problem in
O((n + m)log(n + m)). Also, it can be solved in O((n + m)log(eps−1)2) using nested ternary searches
https://codeforces.com/blog/entry/61710 (Blogewoosh 8 when?).

Problem Tutorial: “Permutation Matrix”
There is no such matrix 2× 2.

Construct a matrix 4× 4:
1 15 3 13
16 2 14 4
5 11 7 9
12 6 10 8


Then, using four matrix 4× 4, you can construct a matrix 8× 8. You can divide a smaller (4× 4) matrix
into the «small part» (elements ≤ 8), and «big part» (elements > 8). Determine a matrix m(x, y) as
a matrix 4 × 4, with the value x added to each «small> element, and the value y added to the «big»
elements.

So we can construct a matrix:[
m(0, 48) m(16, 32)
m(32, 16) m(48, 0)

]
This is the following matrix:

1 63 3 61 17 47 19 45
64 2 62 4 48 18 46 20
5 59 7 57 21 43 23 41
60 6 58 8 44 22 42 24
33 31 35 29 49 15 51 13
32 34 30 36 16 50 14 52
37 27 39 25 53 11 55 9
28 38 26 40 12 54 10 56


Doing so as many times as needed, you can construct a matrix for any given n > 1.

Problem Tutorial: “Anti-stress”
We will draw lines, such that they will divide points into two halfs(where point on a line can belong to
any of the halfs).

Let’s fix two perpendicular directions. Draw two lines, dividing point into halfs, parallel to this directions.

Page 2 of 5



Day 6: Yandex Cup 2022
42nd Petrozavodsk Programming Camp, Winter 2022, Sunday, February 6, 2022

It will divide plane into 4 quadrants, let’s name this 1(right-up), 2(left-up), 3(left-down), 4(right-down).
Let’s denote by cntb(x) number of blue points in region x, by cnty(x), number of yellow points in region
x.

Suppose that it happened, that cntb(1) = cnty(3). Then, valid answer is the following:

Choose red point as the intersection of this two lines.

1. Pair blue points in 1 region and yellow in 3 region. Each of the angles will be not acute.

2. Pair blue points in 3 region and yellow in 1 region. Each of the angles will be not acute.

3. Do similar things for 2 and 4.

For this pairing to exist, we need to proof that cntb(3) = cnty(1) and similar equations for 2, 4 regions.

Indeed, cnty(3) + cntb(3) + cnty(2) + cntb(2) = n, cnty(1) + cntb(1) + cnty(2) + cntb(2) = n. So,
cnty(3) + cntb(3) = cnty(1) + cntb(1), and, since cntb(1) = cnty(3) → cntb(3) = cnty(1).

cnty(2)−cntb(4) = n−cnty(1)−cntb(1)−cntb(2)−cntb(4) = n−cnty(1)−(n−cntb(3)) = cntb(3)−cnty(1) = 0.

From similar arguments, cnty(4) = cntb(2).

We will actually proof, that there always exists direction such that cntb(1) = cnty(3).

For angle α let’s denote by f(α) difference cntb(1) − cnty(3) if we consider lines in the directions α and
α+ π

2 (note that order of lines actually matters, since some regions will be swapped). Actually, this value
is not defined properly, because there can be points belonging to this two lines and we can divide them
into halfs in different ways. So instead, we will consider range of values that this function can atain. This
range will be contigous integer range(you can note that after swapping any two points answer is changed
by at most 1). Then, we can note that if x ∈ f(α) then −x ∈ f(α + π

2 ). Also, if we will rotate our line
answer will be changed discretly(i.e. we will not skip any value). This allows us to do binary search for
direction(similarly to the way we find roots of continious function if we have two numbers at which values
of function have different signs).

Also, you should be careful about case where there is point in the intersection of two lines(in this case he
can belong to any of the 4 regions).

Problem Tutorial: “Mismatch”
For each value of x let’s calculate how many numbers contain x as submask, let’s denote this value by ax.
Then, by inclusion-exclusion formula, answer will be equal to:∑x=219−1

x=0 (−1)popcount(x)
(
ax
k

)
, where popcount(x) is equal to number of bits in binary representation of x.

This can be optimized using fft, by grouping ax by the value of x(i.e. we can consider
ft =

∑
ax=t

(−1)popcount(x)).

Problem Tutorial: “Lucky Tickets”
We will prove the following: the sum of luckiness over all tickets with not equal digits is equal to 0 modulo
q.

Let’s consider some multiset of numbers A = a1, . . . aq, such not all of them are equal. We will prove that
if we calculate sum of luckiness over all permutations of a1, . . . aq it will be equal to zero.

Consider some arbitary submultiset of this subset B = b1, . . . bk, k > 1. Let’s calculate with which
coefficient b1 · ..bk· will be present in sum (a1 + 1)(a2 + 2) · · · (aq + q) over all permutations of A. It will
be equal to:

NB ·NA\B
∑

S S1 . . . Sq−k, where NX denotex number of permutations of subset X, where sum is taken
over all subsets of S of size q − k.
Let’s calculate S1 . . . Sq−k over all S. It’s easy to see, that it’s equal to coefficent of xk in polynomial
(x+ 1)(x+ 2) . . . (x+ q).

Page 3 of 5



Day 6: Yandex Cup 2022
42nd Petrozavodsk Programming Camp, Winter 2022, Sunday, February 6, 2022

It’s well known fact(equivalent to Fermat’s little theorem) that (x+ 1)(x+ 2) . . . (x+ q) = xq − x mod q.
So, for 1 < k < q this sum will be equal to 0 mod q. Let’s consider k = 1 and k = q:

1. For k = q total sum will NAa1a2 . . . aq. If not all elements are equal than NA = 0 (since it’s q! divided
by some smaller factorials).

2. For k = 1, from our analysis, sum without second part will be equal to −NA\x, where b1 = x. Let’s
calculate sum for the second part:

It will be equal to NA\x(
∑q−1

i=0 2i) = NA\x(2q − 1) = NA\x.

So, overall sum is equal to 0.

So, we need to take into account only multisets of q equal numbers for which sum will be equal to
NAa1 · aq = NAa

q
1 = NAa1 = a1, because of Fermat’s little theorem and fact that NA = 1. We can iterate

over all possible values of this numbers, check if they satisfy condition and add their value to the answer.

Problem Tutorial: “Diversity Street”
First let’s understand how to solve problem if we can’t delete any restriction.

Then, for each house we can calculate it’s minimum height(by taken maximum over all restrictions, which
pass through this house). Then, it’s see to see, that answer will exist iff h1 ≤ 1, h2 ≤ 2, . . ., hn ≤ n, where
hi denotes minimum height restriction in sorted order.

We can note it’s the the same as:

1. At least n values of h are not more than n.

2. At least n− 1 values of h are not more than n− 1.

. . .

At least 1 value of h is not more than 1.

(This way of formulation will help to solve general problem).

Let’s get back to general problem.

For each house let’s calculate it’s minimum height restriction, street restriction on which it’s attained and
minimum height restriction if we delete this street restriction(we can do it, for example, using scanline
and set).

Now, let’s calculate values bi = how many h are not more than i− i. Answer will exist iff bi ≥ 0, for all i.

How this values will be changed if we delete some restrictions? We can iterate over all houses for which
this restriction was the maximum one, then some segment of values of b should be increased by 1 (from
previous value of h on this position to the current one).

So, we can do this updates and check if all bi are not less than 0.

We can do it efficiently using segment tree with lazy propagation(by maintaing minimum and checking if
it’s not less than 0).

After finding which restriction to delete, we can reconstruct answer greedily.

Problem Tutorial: “Disbalance”
For case of n = 1, d = m + 1 is always true after m-th minute. Let’s look at n > 1, and denote ai as
number of bacteria in dish number i:

1) At first, each dish i has ai = 1 bacteria. After each minute, a random ai is selected with probability
ai∑n

j=1 aj
to be inreased by 1. Let’s prove by induction that after k minutes each of the possible combinations

of ai, where
∑n

i=1 ai = n+ k,min(ai) ≥ 1 are equiprobable:

With k = 0, there’s only one possible combination. Let’s denote p(a1, a2, ..., an) as probability of having
those numbers of bacteria in dishes after a1 + a2 + ... + an − n minutes. Then let’s look at distributions

Page 4 of 5



Day 6: Yandex Cup 2022
42nd Petrozavodsk Programming Camp, Winter 2022, Sunday, February 6, 2022

after k minutes, if all possible distributions after k − 1 minutes are equiprobable (and let’s denote this
probability as pk−1):

From definition of this distribution, with a1 + a2 + ... + an = n + k and min(ai) ≥ 1, p(a1, ..., an)
=
∑n

i=1
ai−1
n+k−1p(...ai−1, ai − 1, ai+1, ...) =

∑n
i=1

ai−1
n+k−1pk−1 = k

n+k−1pk−1. This value is independent of
values of ai.

Thus, for a fixed k, all Cn−1n+k−1 combinations of n positive integral numbers with sum n+k in Petri dishes
are equiprobable.

2) Let’s denote mathematical expectation of sum of d after the first k minutes with n dishes as f(n, k),
and expectation of value of d after the k-th minute with n dishes as g(n, k). Because mathematical
expectation of sum is equal to the sum of mathematical expectations, and with k < n − 1 holds d = 0,
f(n, k) =

∑k
m=n−1 g(n,m).

Let’s note, that if ai ≤ max(a1, ..., ai−1, ai+1, ..., an), then (ai−a1− ...−ai−1−ai+1− ...−an) ≤ 0. Because
of this, and because probabilities of distribution of values between ai are independent of their order,
g(n,m) = n ·E(max(a1−a2− ...−an, 0)|

∑n
i=1 ai = n+m) = n ·E(max(2a1−n−m, 0)|

∑n
i=1 ai = n+m).

Let’s denote ∆ = max(2a1 − n−m, 0)

Let’s look at two cases: with even n+m and with odd n+m:

3) Case with even n + m. In this case, m = n + 2b, where b ≥ 0. Then ∀x ∈ [1, b + 1] there’s exactly
Cn−22n+2b−(n+b+x)−1 = Cn−2n+b−x−1 combinations of ai such that ∆ = 2x. Then:

E(∆) =

∑b+1
x=1 2xCn−2n+b−x−1
Cn−1n+m−1

=
2

Cn−1n+m−1

b+1∑
x=1

xCn−2n+b−x−1

b+1∑
x=1

xCn−2n+b−x−1 =

b∑
y=0

(b+ 1− y)Cn−2n−2+y =

b∑
c=0

c∑
y=0

Cn−2n−2+y =

b∑
c=0

Cn−1n−1+c = Cnn+b

g(n, n+ 2b) =
2nCnn+b
Cn−12n+2b−1

=
2(n+ b)!(n+ 2b)!

b!(2n+ 2b− 1)!

4) Case with odd n+m. In this case, m = n+ 2b− 1, where b ≥ 0. Then ∀x ∈ [1, b+ 1] there’s exactly
Cn−22n+2b−1−(n+b−1+x)−1 = Cn−2n+b−x−1 combinations of ai such that ∆ = 2x− 1. Then:

E(∆) =

∑b+1
x=1(2x− 1)Cn−2n+b−x−1

Cn−1n+m−1
=

[
remember case 3

]
=

2Cnn+b −
∑b

y=0C
n−2
n−2+y

Cn−1n+m−1
=

2Cnn+b − C
n−1
n+b−1

Cn−1n+m−1

g(n, n+ 2b− 1) =
(n+ b− 1)!(n+ 2b)!

b!(2n+ 2b− 2)!

5) As such, now for any g(n,m) we can calculate it in O(1), if we precalculated x! and (x!)−1 for x up
to n+m. So, with n, k ≤ 106, if we precalculate those factorials up to 2 · 106 we can calculate f(n, k) in
O(max(k + 2− n, 1)) time.

Problem Tutorial: “Spiral Matrix”
To solve the task, you should just notice this fact: a matrix is a spiral matrix if there is no more than one
bad number, and for every element on a border except for a bad number there is a neighbouring element
inside the matrix. A bad number is a matrix element with value d for which there are no neighbouring
cells with value d+ 1.

So, you can just store prefix-sums to check this conditions.

Page 5 of 5


